Санкт-петербургский Государственный Морской Технический Университет
![]() | ||
![]() | ||
По теме: Термоядерный реактор.
Выполнил:
Студент:
Группа №
Проверил: Исаков Н.Я.
Санкт-Петербург
2000 г.
План:
1.Введение.
2.Плазма и топливный цикл термоядерного реактора.
3. Физические основы реактора-токамака.
3.1 Условия термоядерного «горения».
Возможно вы искали - Реферат: Термоядерный синтез для производства электроэнергии в России и проблемы этого проекта для общества
3.2 Нагрев плазмы.
3.3 Магнитное удержание.
3.4 Удаление продуктов реакции из плазмы.
3.5 Переход к непрерывному режиму.
4. Инженерные аспекты термоядерного реактора.
Похожий материал - Реферат: Техника и электроника СВЧ (Часть 1)
4.1 Магнитная система.
4.2 Криогенная система.
4.3 Вакуумная система.
4.4 Система энергопитания.
4.5 Бланкет реактора.
Очень интересно - Реферат: Техника и электроника СВЧ (Часть 2)
4.6 Тритиевый контур.
4.7 Защита реактора.
4.8 Системы дополнительного нагрева плазмы и подпитки ее топливом.
4.9 Система управления.
5. Термоядерные реакторы-токамаки и их характеристики.
Вам будет интересно - Реферат: Течения жидких и газообразных сред
6. Термоядерный синтез «завтра».
7. Вывод.
1. Введение:
Сегодня человечество удовлетворяет свои потребности в энергии, главным образом сжигая нефть, газ и уголь. Однако запасы нефти и газа ограничены: с учётом роста потребления энергии они могут быть в значительной мере исчерпаны за какие-нибудь 30-50 лет. Кроме того, нефть и газ – это не только топливо, но и ценное сырьё для получения ряда химических продуктов, производства белка и других важных веществ.
Как же развиваться энергетике? Путь оптимального её развития был намечен нашей страной, построившей более 40 лет назад первую АЭС. Именно ускоренное развитие атомной энергетики и является перспективой на будущее.
Похожий материал - Реферат: Тлеющий разряд
АЭС сегодняшнего дня используют реакцию деления тяжёлых ядер. Но имеются ещё огромные потенциальные резервы развития в лёгких ядрах, которые могут быть реализованы в реакциях синтеза. Водородная бомба – это демонстрация возможности освобождения такой энергии в форме взрыва чудовищной силы. Но в скором времени физики осуществят управляемый термоядерный синтез (УТС).
Не исключено, что необходимые темпы роста производства энергии в перспективе будет трудно поддерживать, даже «сжигая» во все больших масштабах дешёвый уран и вырабатываемый в реакторах на быстрых нейтронах плутоний. Кроме того, с развитием ядерной энергетики придётся иметь дело с большими массами радиоактивных отходов и ужесточения требования к радиационной безопасности. Сегодня неясно, как это скажется на экономике ядерной энергетики. УТС же, использующий в качестве на начальном этапе дейтерий и литий, а затем только дейтерий. Может стать поистине не иссекаемым источником энергии, позволяющим резко снизить радиационную опасность.
Последние 40 лет работы по УТС ведутся широким фронтом в различных направлениях. В итоге одним из наиболее перспективных путей решения этой проблемы признана разработка систем с магнитным удержанием плазмы, среди которых токамаки занимают передовые позиции.
Термин «токамак» был предложен И.Н. Головиным и Н.Я. Явлинским, которые, начав в 50-х годах исследования по управляемым термоядерным реакциям, избрали для этой цели вакуумную камеру в форме бублика и внутри её с помощью мощного газового разряда создали нагретый до очень большой температуры газ – высокотемпературную плазму. Для стабилизации плазмы использовалось сильное продольное магнитное поле. От первых слогов названий основных компонентов установки – ТОроидальная КАмера с МАГнитным полем – и было образованно слово «токамак» (при этом звонкая согласная Г была заменена на глухую К)

