Реферат: Задачи по финансам

Решение.

Способ 1.

,

K’ = K + I = 4000+44=4044,

где K – капитал или заем, за использование которого заемщик выплачивает определенный процент;

I – процентный платеж или доход, получаемый кредитором от заемщика за пользование денежной ссудой;

p – процентная ставка, показывающая сколько д.е. должен заплатить заемщик за пользование 100 ед. капитала в определенном периоде времени (за год);

Возможно вы искали - Шпаргалка: Вопросы по бухучету

d – время, выраженное в днях.

360 – число дней в году.

Способ 2.

Время t = 80/360 = 2/9.

K’ = K + K×i×t = 4000(1 + 0.05×2/9) = 4044,

где i – процентная ставка, выраженная в долях единицы,

Похожий материал - Статья: Глава 25 НК РФ новое понятие Налоговый учет

t – время, выраженное в годах.

Задача 2. На сколько лет нужно вложить капитал под 9% годовых, чтобы процентный платеж был равен его двойной сумме.

Решение

2×K = I.

2×K = K×9×g/100,

g = 2×100/9 = 22.22

Задача 3. Величина предоставленного потребительского кредита – 6000 д.е., процентная ставка – 10% годовых, срок погашения – 6 месяцев. Найти величину ежемесячной выплаты (кредит выплачивается равными долями).

Решение

Таблица 1

План погашения кредита (амортизационный план)

Месяц

Долг

Процентный
платеж

Выплата
долга

Месячный
взнос

6000

10%

1

5000

50

1000

1050

2

4000

42

1042

3

3000

33

1033

4

2000

25

1025

5

1000

17

1017

6

¾

8

1008

175

6000

6175

Объяснение к таблице

Месячная выплата основного долга составит:

K / m = 6000/6 = 1000.

Очень интересно - Реферат: Планирование труда и заработной платы

Месячный взнос представляет собой сумму выплаты основного долга и процентного платежа для данного месяца.

Процентные платежи вычисляются по формуле:

,

где I1 – величина процентного платежа в первом месяце;

p – годовая процентная ставка, %.

Общая величина выплат за пользование предоставленным кредитом:

=175.

Вам будет интересно - Реферат: Банківський облік і аудиТ 2

Общая величина ежемесячных взносов:

=1029.

Задача 4. Вексель номинальной стоимостью 20000 д.е. со сроком погашения 03.11.95. учтен 03.08.95 при 8% годовых. Найти дисконт и дисконтировать величину векселя.

Решение

Так как нам известна номинальная величина векселя, дисконт, находим по формуле:

=409,

где Kn – номинальная величина векселя;

d – число дней от момента дисконтирования до даты погашения векселя;

Похожий материал - Реферат: Основные характеристики малых предприятий

D – процентный ключ или дивизор (D = 3600/p = 36000/8 = 4500).

Дисконтированная величина векселя равна разности номинальной стоимости векселя и дисконта (процентного платежа):

20000 – 409 = 19591.

Задача 5. Пусть в банк вложено 20000 д.е. под 10% (d) годовых. Найти конечную сумму капитала, если расчетный период составляет:
а) 3 месяца;
б) 1 месяц.

Решение

При декурсивном (d)расчете сложных процентов:

Kmn = K×Ip/m mn , Ip/m = 1 + p/(100×m),