В школьном курсе математики довольно мало внимания уделяется задачам на смеси, концентрации растворов и производительности труда. Однако в последние годы на вступительные экзамены в ВУЗы такие задачи даются абитуриентам достаточно часто и вызывают у них затруднения.
Цель настоящего реферата – изучение методов решения таких задач, решение нескольких задач на изменение концентраций и на начисление простых и сложных процентов.
Кроме того, поскольку в настоящее время научная работа немыслима без компьютера я поставила себе дополнительную задачу освоить текстовый редакторWord, который используется наиболее широко.
Задачи на концентрации
Рассматривая задачи на составление уравнений, остановимся, прежде всего, на задачах, решение которых связано с использованием понятий “концентрация” и “процентное содержание”. Обычно в условиях таких задач речь идет о составлении сплавов, растворов или смесей двух или нескольких веществ.
Основные допущения, которые принимаются в задачах подобного рода, состоят в следующем:
Возможно вы искали - Реферат: Об ориентационной поляризации спиновых систем
а) все получающиеся сплавы или смеси однородны;
б) при слиянии двух растворов, имеющих объемы V1 и V2 , получается смесь, объем которой равен V1 +V2 , т.е. V0 =V1 +V2 .
Заметим, что такое допущение не представляет собой закон физики и не всегда выполняется в действительности. На самом деле при слиянии двух растворов не объем, а масса или вес смеси равняется сумме масс или весов составляющих ее компонент.
Задачи на смешивание при кажущейся простоте не являются очевидными. Так, в учебнике алгебры авторов Ш.А.Алимова, Ю.М.Колягина и др. в задаче
№ 491 допущена ошибка, которая не исправлена даже в 6 издании. Текст задачи гласит: “Два раствора, из которых первый содержит 0,8 кг, а второй 0,6 кг безводной серной кислоты, соединили вместе и получили 10 кг нового раствора серной кислоты. Найти массу первого и второго растворов в смеси, если известно, что !!!безводной серной кислоты в первом растворе было на 10% больше, чем во втором.” Если считать условие, выделенное курсивом верным, то
Похожий материал - Доклад: Напряжённость хронополя, или как обнаружить гравитационную волну
0,2 кг (0,8-0,6) безводной серной кислоты равно 10%, то есть, 100% ее равно 2 кг, а по условию задачи ее всего в обоих растворах 1,4 кг (0,8+0,6). Противоречие исчезает, если вместо знаков !!! вставить слово “концентрация”.
Рассмотрим для определенности смесь трех компонент А, В и С. Объем смеси V0 складывается из объемов чистых компонент:
V0 =VА +VВ +VС ,
а три отношения
cA =VА /V0 , cB =VB /V0 , cC =VC /V0
Очень интересно - Реферат: Задачи на наибольшее и наименьшее значения функций
показывают, какую долю полного объема смеси составляют объемы отдельных компонент:
VА =cA V0 , VB =cB V0 , VC =cC V0 .
Отношение объема чистой компоненты (VА ) в растворе ко всему объему смеси (V0 ):
cA =VА /V0 =VА /(VА +VВ +VС ) (*)
называется объемной концентрацией этой компоненты.
Вам будет интересно - Доклад: Вероятность случайного события
Концентрации - это безразмерные величины; сумма концентраций всех компонент, составляющих смесь, очевидно, равна единице:
cA +cB +cC =1.
Поэтому, для того чтобы структура раствора, состоящего из n компонент, была определена, достаточно знать концентрацию (n-1)-й компоненты. Если известны концентрации сA , сB исC компонент, составляющих данную смесь, то ее объем можно разделить на объемы отдельных компонент (рис. 1):
V0 =cA V0 +cB V0 +cC V0 . (формула 1)
Похожий материал - Реферат: Графы
Объемным процентным содержанием компоненты А называется величина
рА =cA 100% , (**)
т. е. концентрация этого вещества, выраженная в процентах.
Если известно процентное содержание: вещества А, то его концентрация находится по формуле