Определение. Сумма членов бесконечной числовой последовательности
называется числовым рядом.
![]()
При этом числа
будем называть членами ряда, а un – общим членом ряда.
Определение. Суммы
, n = 1, 2, … называются частными (частичными) суммами ряда.
Таким образом, возможно рассматривать последовательности частичных сумм ряда S1 , S2 , …,Sn , …
Возможно вы искали - Реферат: Повторные независимые испытания. Формула Бернулли
Определение. Ряд
называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.
![]()
Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.
Свойства рядов.
1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.
2) Рассмотрим два ряда
и
, где С – постоянное число.
Похожий материал - Реферат: Случайный эксперимент, элементарные исходы, события
Теорема. Если ряд
сходится и его сумма равна S, то ряд
тоже сходится, и его сумма равна СS. (C¹ 0)
3) Рассмотрим два ряда
и
. Суммой или разностью этих рядов будет называться ряд
, где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.
Теорема. Если ряды
и
сходятся и их суммы равны соответственно S и s, то ряд
тоже сходится и его сумма равна S + s.
![]()
Разность двух сходящихся рядов также будет сходящимся рядом.
Очень интересно - Реферат: Интуитивное понятие алгоритма и его свойств
Сумма сходящегося и расходящегося рядов будет расходящимся рядом.
О сумме двух расходящихся рядов общего утверждения сделать нельзя.
При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.
Критерий Коши.
(необходимые и достаточные условия сходимости ряда)
Для того, чтобы последовательность
была сходящейся, необходимо и достаточно, чтобы для любого
существовал такой номер N, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:
Вам будет интересно - Курсовая работа: Поиск и исследование внеземных форм жизни. Планетарный карантин, необходимый при этом
.
1.3 Определение. Ряд
называется равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.
Теорема. (Критерий Коши равномерной сходимости ряда)
Для равномерной сходимости ряда
необходимо и достаточно, чтобы для любого числа e>0 существовал такой номер N(e), что при n>N и любом целом p>0 неравенство
![]()
Похожий материал - Статья: О реализации дискретных состояний в ходе флуктуаций в макоскопических процессах
выполнялось бы для всех х на отрезке [a,b].
Теорема. (Признак равномерной сходимости Вейерштрасса)
(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)
Ряд
сходится равномерно и притом абсолютно на отрезке [a,b], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами :