Построить огибающую распределения вероятности занятия линии в пучке из V, на каждую из которых поступает интенсивность нагрузкиа при условии, что:
а) N >> V; б) N V; в) N, V
Для каждого используемого распределения рассчитать среднее число занятых линий и их дисперсию.
Для расчета число линий в пучке определить из следующего выражения:
V= ;
Возможно вы искали - Реферат: Дискретные сигналы
целая часть полученного числа, где NN– номер варианта.
Средняя интенсивность нагрузки, поступающей на одну линию:
а = 0,2+0,01 * NN
Примечания:
Для огибающей распределения привести таблицу в виде:
Р(i) |
i |
Похожий материал - Реферат: Основные компоненты системы управления документооборотом (СУД)
В распределении Пуассона привести шесть – восемь составляющих, включая значение вероятности для i = (целая часть А)
А = а * V
Решение:
Случайной называют такую величину, которая в результате эксперимента принимает какое то определенное значение, заранее не известное и зависящее от случайных причин, которые наперед предугадать невозможно. Различают дискретные и непрерывные случайные величины. Дискретная случайная величина определяется распределением вероятностей, непрерывная случайная величина – функцией распределения основными характеристиками случайной величины являются математическое ожидание и дисперсия.
Определим исходные данные для расчета:
Очень интересно - Доклад: Телекоммуникационная «начинка» офисных помещений
V=
a = 0.2 + 0.01 * 11 = 0.31 Эрл (средняя интенсивность нагрузки)
А = а * V = 0,31 * 11 = 3,41 » 4 Эрл (нагрузка)
а) Определим вероятности занятия линий в пучке из V = 11, при условии N >> V (N– число источников нагрузки).
Для этого используем распределение Эрланга, представляющее собой усеченное распределение Пуассона, в котором взяты первые V+1 значения и пронумерованы так, чтобы сумма вероятностей была равна единице.
Вам будет интересно - Доклад: Интернет как инструмент маркетинга
Распределение Эрланга имеет вид:
Pi (V) = , ,
где Pi (V) – вероятность занятия любых i линий в пучке из V.
Для определения составляющих распределения Эрланга можно применить следующее реккурентное соотношение:
Похожий материал - Реферат: Развитие представлений об информации
Математическое ожидание и дисперсия числа занятых линий соответственно равны:
где Pv –вероятность занятости всех линий в пучке из V.