Проблема современной энергетики состоит в том, что производство электроэнергии – источник материальных благ человека находится в губительном противостоянии с его средой обитания – природой и как результат этого – неизбежность экологической катастрофы.
Поиск и открытие альтернативных экологически чистых способов получения электроэнергии – актуальнейшая задача человечества.
Одним из источников энергии, является природная окружающая среда: воздух атмосферы, воды морей и океанов, которые содержат огромное количество тепловой энергии, получаемой от Солнца.
Рассмотрим для примера изолированный кристалл собственного полупроводника, который легирован (см. рис.1) донорной примесью вдоль оси X по экспоненциальному закону
Nд (x) = f (ekx ).
Возможно вы искали - Доклад: Роль наблюдателя в квантовой механике
Рис. 1. Кристалл полупроводника легированый донорной примесью
Левая часть кристалла (X0 ) легируется до такой концентрации Nдмакс , чтобы уровень Ферми находился у дна зоны проводимости полупроводника, а правая часть кристалла (Xк ) легируется до минимально возможной концентрации Nдмин , чтобы уровень Ферми находился посредине запрещенной зоны полупроводника, при заданной температуре.
Основными носителями заряда, в данном случае, являются электроны (n).
Для простоты рассуждений, неосновными носителями – дырками (р) пренебрегаем из-за малой их концентрации.
Похожий материал - Реферат: Технологические основы электроники
В некоторый условный начальный момент, когда закон распределения концентрации электронов совпадает с законом распределения донорной примеси (n=Nд ), кристалл в целом является электрически нейтральным и в каждом его элементарном объеме выполняется условие np=ni 2 , а вдоль оси X существует положительный градиент концентрации (см. рис.2) основных носителей – электронов dn/dx>0.
Рис. 2. Закон распределения концентрации основных носителей в кристалле
Под действием сил теплового движения и в результате наличия градиента концентрации, электроны начинают диффундировать в кристалле вдоль оси X из области высокой их концентрации (X0 ) в область низкой концентрации (Xк ), в результате – электронейтральность кристалла нарушается.
Электроны, движущиеся слева направо, оставляют после себя положительно заряженные ионы донорной примеси Nд + .
Очень интересно - Доклад: Расчёт полупроводникового выпрямителя
Эти ионы, жестко связанные с кристаллической решеткой полупроводника, образуют в левой части кристалла неподвижный положительный объемный заряд, а электроны, перешедшие в правую часть кристалла, образуют отрицательный объемный заряд равной величины, в результате чего в объеме кристалла полупроводника вдоль оси X образуется постоянное по величине электрическое поле Eх (см. рис.3).
Рис. 3. Распределение объемных зарядов в кристалле
Силы электрического поля будут стремиться возвращать электроны в ту область кристалла, откуда они диффундировали. Те электроны, энергия которых недостаточна для преодоления сил электрического поля, будут возвращаться – дрейфовать в электрическом поле в направлении, противоположном процессу диффузии.
Таким образом, в кристалле полупроводника вдоль оси X текут два встречно направленных тока: Jдиф. – ток диффузии, Jдр. – ток дрейфа.
Вам будет интересно - Доклад: Причина магнитного поля Земли?
В процессе образования электрического поля в кристалле в сторону увеличения его напряженности, диффузионный ток уменьшается вследствие снижения градиента концентрации электронов, а дрейфовый ток увеличивается за счет увеличения количества электронов, возвращаемых растущим полем в обратную сторону, что в конечном итоге приводит к выравниванию этих токов Jдиф. =Jдр. и установлению в объеме кристалла электрического и термодинамического равновесия.
Плотность тока диффузии: Jдиф. = –qn D(dn/dx).
Плотность тока дрейфа: Jдр. = μnqn Ex .
Суммарный ток в кристалле:
Jk = Jдр. + Jдиф. = μnqn Ex – qn D(dn/dx) = 0.
Похожий материал - Реферат: Проблема эволюции Вселенной
Исходя из вышеизложенного, напряженность электрического поля в кристалле:
Ex = (kT / qn ) K,
где: k – постоянная Больцмана, T – абсолютная температура кристалла, qn – заряд основных носителей, K – показатель экспоненты распределения примеси.
Таким образом, неоднородное распределение донорной примеси Nд вдоль оси X кристалла полупроводника по экспоненциальному закону приводит к образованию в объеме кристалла полупроводника постоянного по величине электрического поля, величина напряженности которого Ex не зависит от координаты X, а определяется только величиной абсолютной температуры T кристалла и показателем K экспоненты распределения донорной примеси. При этом один конец полупроводника (X0 ) окажется заряженным положительно по отношению к другому концу полупроводника (Xk ).