Пусть Q – плоский многоугольник в плоскости a и S – точка, не принадлежащая плоскости а. Соединим каждую точку М многоугольника Q с точкой S отрезком МS. Отрезки МS заполняют некоторый многогранник. Этот многогранник называется пирамидой (рис. 1)
Пирамида называется n-угольной, если Q – n-угольник.
Треугольная пирамида называется также тетраэдром. Многоугольник Q называется основанием пирамиды, а точка S – вершиной пирамиды. Высотой пирамиды называется отрезок перпендикуляра, проведенного через вершину к плоскости ее основания; концами этого отрезка являются вершина пирамиды и основание перпендикуляра; на рисунке 1 SH – высота пирамиды. (Высотой пирамиды называют длину этого отрезка.) Пусть A, B, C, …, K – вершины многоугольника Q, лежащего в основании пирамиды. Тогда треугольники ASB, BCS, …, KSA называются боковыми гранями пирамиды, а отрезки AS, BS, CS, …, KS боковыми ребрами.
Сечение пирамиды, проходящее через вершину и диагональ основания, называется диагональным сечением пирамиды. Например, треугольник ACS (см. рис.1) – диагональное сечение пирамиды.
Пирамида называется правильной, если основанием ее является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника (центром основания). Осью правильной пирамиды называется прямая, содержащая ее высоту.
Возможно вы искали - Реферат: Неопределенный интеграл
Высота боковой грани правильной пирамиды, проведенная из вершины пирамиды, называется апофемой пирамиды (обозначение hбок). Все апофемы правильной пирамиды равны между собой.
На рисунке 2 изображена правильная треугольная пирамида, где SO – высота, а SD – апофема.
Часть пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию, называется усеченной пирамидой (рис. 3). Параллельные грани ABC и A1B1C1 называются основаниями, а отрезок перпендикуляра ОО1, опущенного из какой-нибудь точки О1 верхнего основания на нижнее основание, - высотой усеченной пирамиды. Усеченная пирамида называется правильной, если она составляет часть правильной пирамиды. Ее ось – прямая, проходящая через центры оснований. Боковые грани правильной усеченной пирамиды – равные равнобочные трапеции; их высоты называются апофемами.
Пример 1. Определить боковое ребро правильной четырехугольной пирамиды, если ее высота равна 7 см, а сторона основания равна 8 см.
Решение. Пусть условию задачи отвечает рисунок 4. Из прямоугольного треугольника ADC согласно теореме Пифагора имеем:
Похожий материал - Реферат: Независимость событий в примере Бернштейна с правильным тетраэдром
AC=√AD² + DC² = √8² + 8² = 8√2
и, значит, AO = 4√2. Наконец из прямоугольного треугольника AOS согласно той же теореме находим:
AS = √AO² + SO² =√32 + 49 =√81 = 9,
т.е. боковое ребро пирамиды равно 9 см.
Пример 2. Сторона основания правильной четырехугольной пирамиды равна 14 м, а площадь диагонального сечения – 14 м. Найдите боковое ребро пирамиды.
Очень интересно - Реферат: Математизация науки и ее возможности
Решение. Пусть условию задачи отвечает рисунок 4.
Рассмотрим диагональное сечение ACS, где SO – высота пирамиды. Согласно известной формуле для площади треугольника:
½ AC ∙ SO = 14
В силу теоремы Пифагора AC = 14√2 и, значит, SO = √2.
Теперь из прямоугольного треугольника ASO по теореме Пифагора находим
Вам будет интересно - Реферат: Методы сварки
AS = √SO² + (AC/2)² = √2 + 49 ∙ 2 = 10
Итак, боковое ребро пирамиды равно 10 м.
Пример 3. По данной стороне основания а и боковому ребру b определите высоту правильной треугольной пирамиды.
Решение. Так как пирамида правильная, то основание ее высоты O совпадает с центром правильного треугольника ABC – основания пирамиды (см. рис. 2). Поэтому отрезок BO равен радиусу окружности, описанной около треугольника ABC, и, значит, BO = а/√3. Теперь из прямоугольного треугольника BOS по теореме Пифагора получаем:
SO = √BS² – BO² = √b² – a²/3
Похожий материал - Статья: Коричневые карлики
Пример 4. В правильной четырехугольной усеченной пирамиде (рис.5) площади нижнего и верхнего оснований соответственно равны B и b, а боковое ребро составляет с плоскостью нижнего основания угол в 45º. Определить площадь диагонального сечения.
Решение. Стороны оснований равны √B и √b. Отсюда по теореме Пифагора основания диагонального сечения, которым является равнобочная трапеция, равны √2B и √2b. Далее, так как угол при основании этой трапеции равен 45º, то ее высота равна (√2B – √2b) : 2 и, значит, площадь искомого сечения
(√2B + √2b) ∙ √2B – √2b = 2B – 2b = B – b
![]()
![]()
![]()
![]()
2 2 4 2
Задача повышенной сложности