Реферат: Эволюция концепции доказательства

Путник, поторопись: за поворотом дороги исполнятся все твои желания!

Плакат на дороге к замку людоеда

Общеизвестное

Доказательство - рассуждение с целью обоснования истинности некоторого утверждения. Доказательство ассоциируется с математикой, а школьники связывают его прежде всего с геометрией.

Истинно ли доказанное утверждение? - Конечно, что за вопрос…

Арифметика без доказательств

Возможно вы искали - Реферат: Формы, механизмы, энергия наномира

Счет и запись результатов

Нам все, что больше трех, требуется сосчитать: предметы или звуки. Непосредственное, без тренировки, пространственное и временное распознавание числа объектов простирается не далее 4 или 5. Это врожденное свойство: "нейронное" изображение чисел от 1 до 3 в "единичной" системе счисления (вертикальными или горизонтальными черточками) совпадает практически во всех культурах, различия в изображении чисел начинаются с числа 4.

Нейронного запаса человеку оказалось мало, и он пополнил его. Сначала появился счет с применением стандартных счетных предметов: пальцев, камешков или раковин. Затем стали употреблять знаки: узелки, черточки, зарубки. Для уже привычных групп счетных знаков возникли знаки языка - числительные. Сохранился рудимент этой эпохи в китайском языке в виде различных счетных слов, обязательных при счете объектов определенной природы - круглых, плоских, войн и революций и т.п.

Римляне надели камешки (calculus - отсюда калькулятор) на стержни - получились счеты. Счеты неявно ввели позиционную систему счисления. Нуль в этой системе не требовал изображения и не мог его иметь. Для записи результатов счета потребовались средства письменности - иероглифы и буквы алфавита. В Древнем Египте иероглифами записывали числа до десяти миллионов.

Греки использовали для записи результатов астрономических вычислений смешанную систему: для целой части - собственную десятичную алфавитную непозиционную, для дробной части - 60-ричную вавилонскую позиционную. Письменные операции над такими числами были нелегким делом.

Похожий материал - Реферат: Социальная динамика науки

Десятичную систему с нулем изобрели в Индии (VI век); ее заимствовали арабы, а у арабов - европейцы, которые до того пользовались римскими цифрами. Арабские цифры и десятичные дроби были открыты европейцами уже после того, как они открыли Америку. Операции над цифровыми символами на бумаге стали проще, но и до сих пор трудны, а с появлением калькуляторов стали разве лишь непопулярным интеллектуальным спортом.

Кто может сегодня извлечь квадратный корень без калькулятора?

Откуда взялась 60-ричная система счисления?

Изображения чисел и средства выполнения операций над числами дают работающую языковую модель - теорию. Разумеется, шесть тысяч лет тому назад наши предки были "заняты делом", а не "теориями". Тем не менее, они создали арифметику - теорию, оказавшуюся более эффективным инструментом, нежели врожденная нейронная модель счета. Арифметика - квант надбиологической эволюции, элемент культуры.

Формула

Теория может работать не только прямо, она может обеспечивать и "обратный ход". Например, исследование уравнения a + x = b. Разность b - a становится решением уравнения.

Очень интересно - Реферат: Новое представление о пространстве и времени в рамках целостной парадигмы

Важнейшим вкладом в математическую науку и практику стала формула - точное формальное предписание, определяющее преобразование одного языкового объекта в другой.

Формулу объявляли и иногда поясняли; о доказательстве не было и речи. Для геометрических формул приводили поясняющий чертеж (иногда с надписью "Смотри!").

Формула может быть словесной, геометрической, знаковой. Типовой пример - тоже формула. Формула до сих пор господствует в школе и в жизни и для многих является вершиной абстракции.

Переход к формулам - квант эволюции. Формулы превратили проблемы в задачи, а задачи в упражнения (для знающих людей). Количество решаемых и решенных арифметических задач - объектов предыдущего уровня - стало стремительно увеличиваться, а деятельность на этом уровне стала рутинной. Социальный престиж решателей задач снизился, но зато их количество возросло. Умельцы, решавшие задачи "доформульными" средствами, быстро "вымирали". Изобретатели формул оставались в меньшинстве, но в выигрыше.

Таковы свойства любого квантового перехода.

Вам будет интересно - Статья: Негатроника. Исторический обзор

Формула, конечно, существует не сама по себе, а только в некотором теоретическом и практическом контексте и далее вплоть до культурного контекста. Не всегда новая формула, особенно опирающаяся на новые понятия, сразу и успешно вытесняет старые подходы и навыки и их владельцев.

Бухгалтерский учет с его концепциями дебета и кредита, с проводками и с двойной записью - живучий плод изобретательности тех, кто так и не смог освоить понятие отрицательного числа (красное сальдо).

Доказательство

Греки перенесли способы убеждения из полисной, гражданской практики в науку. Доказательство на городской площади было для греков реальностью жизни, одним из привычных и эффективных применений интеллекта.

Фалес Милетский (611-549) продемонстрировал новое применение интеллекта: доказательство теорем. Фалес доказал, что диаметр делит круг на две равные части; что противоположные углы при пересечении двух прямых равны; что углы при основании равнобедренного треугольника равны; доказал признак равенства треугольников по стороне и прилежащим к ней углам. Он же построил окружность вокруг прямоугольного треугольника, указал способ определения высоты сооружения по его тени и способ определения расстояния до недоступного предмета (корабля в море).

Зачем Фалес среди прочих доказывал очевидные утверждения? - Не для того, чтобы убедить кого-либо в их справедливости, а для того, чтобы разработать и продемонстрировать новую технологию мышления.

Похожий материал - Реферат: О вращении электрона

Изобретение доказательства - квант эволюции. Фалес открыл новый горизонт, золотую жилу. Доказательство - это способ производства формул. Количество формул - объектов предыдущего уровня - стало быстро расти, а затраты на рождение формулы уменьшились. Как всегда, вместе с новым полем деятельности возникла новая каста - каста людей, умеющих формулировать и доказывать теоремы.

В доказательствах геометрических теорем появились аксиомы. Аксиомы геометрии опираются на фундаментальные понятия порядка, движения, тождества, непрерывности. Применение аксиом предполагает использование процедур логического вывода. Логический вывод представляет собой последовательность утверждений, которые выведены из аксиом и/или из ранее выведенных утверждений. Аксиомы и только они принимаются без вывода, т.е. без доказательства.

Малограмотная формулировка: "Аксиома не требует доказательства".

Логический вывод доставил возможность получения из достоверных знаний новых достоверных знаний.