Молекулы в жидкостях находятся близко друг к другу, примерно на расстояниях равных размерам самих молекул. Это является причиной высокого молекулярного ван-дер-ваальсового давления, которое равно . Для воды, например, он равен около 11000 атм. Удельный объем жидкостей в тысячи раз меньше чем газов, следовательно, отношение в жидкостях в миллионы раз больше, чем в газах. Поэтому можно пренебречь внешним давлением, и уравнение Ван-дер-Ваальса примет вид
|
|
|
|
|
Опыт показывает, что коэффициент сжимаемости большинства жидкостей лежит в пределах от 10-4 до 10-5 .
Коэффициент сжимаемости жидкости зависит от давления. Он возрастает с повышением температуры. К этому результату можно прийти и опытным путем и исходя из уравнения Ван-дер-Ваальса. Поскольку это уравнение связывает температуру, объем и давление, то из него можно вычислить величину . При расчете необходимо учитывать, что постоянные a и b на самом деле зависят от температуры. Совокупность опытных данных позволила получить эмпирическую формулу для коэффициента сжимаемости жидкости:
Возможно вы искали - Реферат: Кинетика мономолекулярных реакций в плотных средах
где A – некоторая функция, возрастающая с температурой, p – внешнее давление и pT – давление, связанное с силами Ван-дер-Ваальса (a/V2 ) при температуре T. Эта формула показывает, что коэффициент сжимаемости растет с повышением температуры и уменьшается с ростом давления.
Среди всех жидкостей наибольшей сжимаемостью обладает жидкий гелий, у которого при давлении в несколько атмосфер коэффициент c равен . Коэффициент сжимаемости воды равен , а ртути –.
Тепловое расширение жидкости
Тепловое расширение вещества характеризуется коэффициентом объемного расширения
,
Похожий материал - Реферат: Основные открытия в естествознании
т.е. относительным изменением объема V при изменении температуры T на 1 К.
Числовые значения коэффициента a сильно зависят от температуры и давления. Для различных жидкостей значения a при одинаковых температурах могут меняться весьма значительно. Так, например, для воды , для бензола , для жидкой углекислоты , глицерина и т.д. При повышении температуры a сильно возрастает. Так для жидкой углекислоты при повышении температуры от 0° до 20° коэффициент теплового расширения возрастает вдвое. Увеличение давления несколько снижает значение a.
Вода обладает аномальным тепловым расширением. В интервале от 0° до 3,98° коэффициент a отрицателен: при нагревании объем воды уменьшается и наибольшей плотности вода достигает при 3,98° C. При этой температуре a = 0.
Причиной этого явления является то, что молекулы воды имеют различный состав: не только H2 O, но 2H2 O и 3H2 O. Относительные количества этих молекул меняются с температурой и давлением.
Теплоемкость жидкостей
Внутренняя энергия жидкостей определяется не только кинетической энергией тепловых движений частиц, но и их потенциальной энергией взаимодействия. Поэтому закономерности, полученные для теплоемкостей идеальных газов из уравнений кинетической теории, не могут быть справедливы для жидкостей.
Очень интересно - Курсовая работа: Базовый интегральный модуль неокортекса. Проблема и решение - дополнительный подход
Опыт показывает, что теплоемкость жидкостей зависит от температуры, причем вид зависимости у разных жидкостей различный. У большинства из них теплоемкость с повышением температуры увеличивается, но есть и такие у которых, наоборот, - уменьшается. У некоторых жидкостей теплоемкость с повышением температуры сначала падает, а затем, пройдя через минимум, начинает расти. Такой ход теплоемкости наблюдается у воды. Жидкости с большим молекулярным весом обычно имеют большие значения теплоемкостей. Особенно это проявляется у органических жидкостей.
У жидкостей, как и газов, следует различать теплоемкость при постоянном объеме и при постоянном давлении. Разность молярных теплоемкостей равна Cp – CV равна работе расширения pdV ( p – молекулярное давление ) моля жидкости при его нагревании на один градус, поэтому численное значение этой разности зависит от значения коэффициента объемного теплового расширения жидкости. В отличие от идеальных газов значение Cp - CV у жидкостей не равно постоянной R, а может быть и больше и меньше в зависимости от значения коэффициента объемного расширения и от величины внутренних сил взаимодействия частиц жидкости, против которых совершается работа расширения (давление p в выражении pdV связано именно с этими силами).
Так, у жидкого аргона при 140 К теплоемкость , а и, следовательно . У воды же при температуре около 0° C теплоемкость , а , так что .
Таким образом, численные значения теплоемкостей жидкостей могут быть самыми разнообразными. Исключение составляют жидкие металлы, у которых молярная теплоемкость обычно близка к значению .
Явления переноса в жидкостях
В жидкостях, как и в газах, наблюдаются явления диффузии, теплопроводности и вязкости. Но механизм этих процессов в жидкостях иной, чем в газах.
Вам будет интересно - Реферат: Абсорбция
В отличие от газов, в жидкостях отсутствует понятие длины свободного пробега. Это связано с тем, что в жидкостях среднее расстояние между молекулами такого же порядка, как и размеры самих молекул. Молекулы жидкости могут совершать лишь малые колебания в пределах, ограниченных межмолекулярными расстояниями.
Такие колебания молекул время от времени сменяются скачками на некоторое расстояние d, происходящими из-за получения молекулой в результате флуктуации избыточной энергии от соседних молекул. Колебания, сменяющиеся скачками, – и есть тепловые движения молекул жидкости.
Диффузия
Для явления диффузии в жидкости справедлив закон Фика. Он гласит:
,
где I – диффузионный поток в направлении оси X, D – коэффициент диффузии, а - градиент концентрации по оси X.
Похожий материал - Реферат: Влияние повышенного и сниженного уровня моноаминов на функциональную организацию колонок C1 коры мозга крысы
Обозначим время между скачками молекул через t, тогда величина - скорости молекулы. Это дает возможность сравнить со средней длинной свободного пробега, а - со средней скоростью молекул. Тогда по аналогии с идеальными газами коэффициент диффузии (точнее самодиффузии) жидкости равен:
.
Коэффициент самодиффузии сильно зависит от температуры, т.е. с повышением температуры он увеличивается.
Выражение коэффициента диффузии можно переписать в виде