Реферат: Основы фрактального исчисления

Предложенасистемааксиом, определяющиефрактальноеисчисление. Показаноееприменениедляиерархическихструктур. Вкачествефрактальныхразветвленныхструктуррассмотреныдельтырекистримерныеканалы. Введеныфрактальныеинтегралыидифференциалы, вычисленыихзначениядляэлементарныхфункций. Рассмотреныпростейшиефрактальныеуравнения.

Введение во фрактальное исчисление. Фрактальная геометрия, созданная Бенуа Б. Мандельбротом 30 лет назад, основывается на экспериментальном факте, что в общем случае длина L произвольной кривой (которая может быть изломана в любой точке) степенным образом зависит от масштаба измерения d [1,2,3]:

L = C×d1- D . (1)

Здесь С - размерный множитель, свой для каждой кривой, D - фрактальная размерность; наглядный пример - длинноногому дорога будет казаться короче. Для обычных, гладких линий D = 1 и получаем "истинную" длину. Если кривая плотно заполняет всю плоскость (простой пример - броуновская траектория), то для нее D = 2. Формулу легко проверить, нарисовав синусоподобную линию и, меняя раствор циркуля, измерить длину такой линии. Довольно очевидно, что как вся линия, так и любой ее участок обладают одной и той же фрактальной размерностью. Такое свойство называется самоподобием (скейлинг, масштабная инвариантность). Самоподобие означает, что как вся линия, так и любой ее участок обладают одной и той же фрактальной размерностью. Если линию увеличить в l раз, то для измерения новой длины lL достаточно использовать масштаб, равный ld , т.е.

lL = C×( ld ) 1- D . (2)

Возможно вы искали - Реферат: Математика и проблема адекватного описания реальности

Формулы Мандельброта и условие самоподобия в форме (2) достаточно взять в виде аксиом фрактального исчисления, тогда чисто логическим путем можно получить практически все, известные на последнее время, результаты [4].

Альтернативная формулировка. При решении различных задач бывает полезным дать другую формулировку исходных аксиом. Во первых, длину измеряют, подсчитывая число масштабов, т.е. L = N ( d )×d , где N (d ) - необходимое число шагов (растворов циркуля), с которым масштаб обходит всю линию, при этом из (1) следует, что N ( d ) = C×d- D . В новом масштабе, равном

d* = ×ld, (3)

длина будет L* = C×d* 1- D . Подставляя (3) в выражение для L* , получаем

L* = C×l1- D ×d 1- D . Но здесь C×d 1- D есть исходная длина, равная N ( d )×d, следовательно

Похожий материал - Реферат: Гипотеза о природных причинах стационарных орбит атома водорода

L* = l1-D × N ( d )×d . (4)

С другой стороны, L* = N (d* )×d* , или L* = N ( l×d ) ×l×d . Сравнивая последний результат с (4), приходим к замечательному результату:

N ( l×d ) = l-D × N ( d ). (5)

В таком виде обычно и записывают условие самоподобия, подразумевая под N любую функцию от своих аргументов с отличным от D показателем. Во вторых, в формуле (3) l и d входят равным образом, т.е. переобозначение ld не меняет общего вида самой формулы. Можно считать l масштабом, а d - масштабным множителем. Это легко понять - чтобы измерить шестиметровую длину, нужно двухметровый эталон приложить три раза, а можно трехметровый эталон приложить всего два раза. Вместо предложенных постулатов в основу теории фракталов можно положить симметрию переобозначения l и d и условие самоподобия в форме (5). Такая формулировка может оказаться наиболее пригодной в некоторых приложениях. Покажем это на примере иерархических структур, которые строятся по заранее определенным правилам.

Иерархические структуры. Пусть у нас имеется некоторый единичный отрезок. Если взять этот отрезок за масштаб, то последний уложится только один раз, т.е. N (d ) = 1. Далее строим триадную кривую Коха. Для этого отрезок разбиваем на три равные части и на месте среднего из них строим "шляпу". Тогда масштаб будет

Очень интересно - Реферат: Новые фундаментальные физические константы

d / 3, и его надо будет приложить четыре раза, чтобы обойти новую длину, т.е.

N (d /3) = 4. Сравнивая последнее соотношение с 4N (d ) = 4, заключаем, что 4N (d ) =

N (d /3). Это функциональное уравнение, и его решением будет степенная функция:

N ( d ) = C×d- D , где D = Ln 4/Ln 3, - искомая фрактальная размерность кривой Коха. В качестве следующего примера рассмотрим геометрический ряд:. Расстояние между соседними членами ряда будет, или, при

N>> 1: d~ 1/ N 2 . Откуда N~d-1/ 2 , сравнивая с N~d- D , находим фрактальную размерность геометрического ряда: D = 1/2. Подобным образом можно рассматривать практически все иерархические структуры.

Вам будет интересно - Реферат: Великое молчание Вселенной: почему основной кризис современного естествознания смыкается с будущим кризисом нашей цивилизации?

Разветвленные структуры. Важным примером применения фрактального исчисления является рассмотрение фрактальных разветвленных структур, к которым относятся дельты рек Селенги и Волги, стримерные каналы, образующиеся при коронном разряде в диэлектрических подложках, к последним относятся и молнии в атмосфере Земли. Для построения разветвленных структур возьмем фрактальную линию и разрежем ее на множество неравномерных отрезков. Разбросав эти отрезки по плоскости, мы получим пример разветвленной структуры. Наши постулаты позволяют определить зависимость длины всех отрезков от размера области, занимаемые отрезками на плоскости. Для этого проведем операцию переобозначения, заменив l на 1/R, где R будет линейным размером области. Тогда из (2), после простых сокращений, получаем L = C×d1- D ×RD . Убрав все неопределенные масштабные множители, находим

L ~ R D . (6)

Это важный результат. Если принять, что все отрезки обладают однородной массовой плотностью, то их общая масса будет зависеть от размера области как RD , а это известное положение в физике фрактальных кластеров, где оно и служит определением размерности [1,2].

В качестве примера разветвленной структуры была рассмотрена дельта реки Селенга. При расчете использовались топографическая и электронная карты [5,6]. Методика подсчета длины всех русловых рукавов и размеров областей разбиения подробно изложены в [7,8]. Оказалось, что фрактальная размерность дельты Селенги равна 1.38 ¦ 0.01. Относительно небольшое значение размерности указывает, что разветвленная структура рассматриваемой дельты разряжена. Для сравнения у дельты Волги размерность оказалась равной 1.72, такое большое значение указывает на густоту русловых разветвлений, это хорошо наблюдается визуально на карте (рис. 1 в [9]).

Помимо определения фрактальной размерности по формуле (3), была использована вторая независимая методика, основанная на следующем. Если посчитать число пересечений N руслами рукавов произвольного периметра линейным размером R, то они связаны между собой степенным образом:

Похожий материал - Реферат: Развитие гроз в конвективных облаках

N ~ R n , n = 2 ( D - 1 ). (7)

Качественно результат можно обосновать следующим образом. Для обычных евклидовых линий число N не должно зависеть от R, т.е. при D = 1 должно быть n = 0. Если линия заполняет всю плоскость, т.е. D = 2, то N будет квадратично зависеть от области, т.е. n = 2. Предполагая линейную зависимость между n и D, приходим к результату (7). При более строгом подходе необходимо было бы использовать понятие фрактальной производной [4]. В качестве примера приведем фрактальную производную от степенной функции:

.

В частности, полученная формула позволяет дать геометрическую интерпретацию фрактальной производной: так, для обычной производной из площади круга получают длину окружности, а фрактальной производной из длины RD получают канторовское множество R2 ( D - 1 ) . Само число всех пересечений представляет пример канторовского множества. По этой методике для дельты Селенги было получено n = 0.74, и для дельты Волги n = 1.44. Используя эти значения, находим D = 1 + n / 2 = 1.37 и D = 1.72 для Селенги и Волги соответственно, что согласуются с выше приведенными значениями. Заметим, что методически производить подсчет по формуле (7) много легче, чем использовать (6). В качестве иллюстрации была рассчитана фрактальная размерность плоскостной проекции микроразрядов в фотопластинке (стримерные каналы), изображение которых представлена на рис. 2 в [10]. Здесь оказалось