1. Вступ.
2. Розвиток методології економіко-математичного моделювання:
a) Історія економіко - математичної ідеї;
b) Економіко-математичні методи і моделі в працях зарубіжних дослідників;
c) Економіко-математичні методи і моделі в працях вітчизняних економістів.
Возможно вы искали - Дипломная работа: Економічна модель оптимізації закупівель та поставок кондитерських виробів на прикладі товариства з обмеженою відповідальністю "Гермес-Груп"
3. Математичне моделювання і зовнішньополітичні дослідження:
a) Проблема методу в політичних дослідженнях;
b) Необхідність побудови математичних моделей зовнішньополітичної поведінки на єдиній методологічній основі;
c) Функціональні простори і проблема представлення залежності як суперпозиції елементарних;
d) Основні підходи використовування систем індикаторів для аналізу зовнішньополітичних процесів;
Похожий материал - Контрольная работа: Економічна статистика
e) Простір індикаторів в системі міжнародних відносин: основні задачі метатеорії.
4. Висновок.
5. Список використаної літератури.
Вступ
Математичне моделювання як кількісний інструментарій дослідника по суті своїй належить не тільки математиці - воно має самостійне значення, і свою історію. Примітно, що один і той же математичний апарат зустрічається в описі різних об'єктів в різних наукових дисциплінах. Тим самим математичне моделювання є міждисциплінарною категорією. Математичні методи, що зарекомендували себе в першу чергу у фізиці і інших природничонаукових дисциплінах, згодом з розвитком самої математики знайшли успішне вживання і в гуманітарних науках. Економіко-математичне моделювання і моделювання політичної сфери виявляють собою наочний приклад плідного вживання математичної ідеї в наукових дослідженнях.
1.1. РОЗВИТОК МЕТОДОЛОГІЇ ЕКОНОМІКО-МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ
1.1.1. Історія економіко - математичної ідеї
Розвиток методології економіко-математичного моделювання має довгу історію. Становлення двох по суті різних наукових дисциплін - економіки і математики - протягом багатьох століть проходило по власних законах, що відображали природу цих дисциплін, і одночасно стикаючись один з одним.
Очень интересно - Контрольная работа: Загальні принципи побудови моделей в економетриці
Зародження економіко-математичної ідеї сходить коренями до глибокої старовини. Так, зведення законів царя Хаммурапі (1792-1790 рр. до н.е.) дає можливість зробити висновок про вельми значний розвиток товарно-грошових відносин у Вавілонії. В трактаті Ксенофонта (430-354 рр. до н.е.) „Про домашнє господарство”, а також „Про доходи” вводиться поняття мінової вартості товару як здібності обмінюватися на інший товар. В трактаті Арістотеля (384-322 рр. до н.е.) „Політика” гроші виступають в ролі вимірювача при обміні, і т.п. Тим самим ще в глибокій старовині з розвитком товарно-грошових відносин в економіці з'являються кількісні величини як міра якості, що можна характеризувати як вживання арифметики в економіці. Поступово наївне уявлення про число як мірі розширилося до розуміння того, як збирати і систематизувати дані. Це розуміння привело до створення дисципліни „статистика”, сам термін якої довгий час вважався синонімом терміну „державознавство”. Так, в німецькому виданні за статистикою, випущеному в 1774 р., затверджується, що „статистика, або державознавство - це наука або область знань про сучасне політичне положення держави”. Потреба в зборі і систематизації даних про ті або інші особливості людського буття сходить настільки далеко, що є всі підстави вважати, що першим статистиком був Бог і статистика як збір даних створена їм разом з світом: „... і сказав господа Мойсею: пішли від себе людей, щоб вони виглянули землю Ханаанську, яку я даю синам ізраїлевим і послав Мойсей людей виглянути землю Ханаанську і сказав їм: підіть в цю південну сторону, і зійдіть на гору, і огляньте землю, яка вона і народ, що живе в ній - сильний він або слабкий, нечисленний або численний”. Очевидно, апофеозом арифметичного підходу в економічних ідеях з'явилися ідеї Уїльяма Петі (1623-1687), основоположника так званої класичної школи політичної економії в Англії. В своїй „Політичній арифметиці” У. Петі показав, що його привертають перш за все статистичні зіставлення, розрахунки, цифри. В ній У. Петі обґрунтував початкові положення статистики, відзначивши, що „точна обізнаність государів про майно їх підданих не несе останнім ніякої шкоди”. Признається, що історично перша модель національної економіки створена французьким економістом Франсуа Кене (1694-1774), яка одержала назву „Економічна таблиця Кене”, в якій містилися зачатки моделей економічної динаміки.
Успіхи вживання математичних методів в економіці яскраво виявилися за часів розвитку самої математики, її основоположних досягнень, пов'язаних з розвитком математичного аналізу.
Математизація науки є закономірним і природним процесом. Якщо диференціація наукового знання приводить до появи нових гілок науки, то інтеграційні процеси в пізнанні миру приводять до своєрідної дифузії наукових ідей з однієї області в іншу. В XVIII столітті Еммануїл Кант не тільки проголошує гасло „всяка наука остільки наука, оскільки вона математика), але і кладе ідеї аксіоматичної побудови геометрії Евкліда в палю концепцію апріорізму. Тоді як в природознавстві математика швидко і міцно зайняла ведучі позиції, в області соціальних наук її успіхи виявилися скромніше. Вживання математичних методів виявилося виправданим там, де поняття носять стабільний характер і стає змістовною задача встановлення зв'язку між цими поняттями, а не нескінченного перевизначення самих понять. Моделювання є дієвим інструментарієм, що дозволяє пояснювати і прогнозувати досліджуваний спостережуваний об'єкт. Представники точних (природних) і гуманітарних наук в поняття моделі вкладають неоднакове значення - спостерігається так : звана методологічна дихотомія, коли протиставляється інтуїтивно-логічний підхід представників гуманітарних наук аналітико-прогностичному підходу, зв'язаному із застосуванням методів точних наук. Математизація економічної науки не в останню чергу обумовлена прагненням вдягнутися свої положення і ідеї в точні абстрактні математичні форми і моделі, бажанням деідеологувати свої результати. В теж час математика в економіці дозволяє точно прорахувати і прогнозувати окремі процеси, що складає очевидну перевагу перед методом „на очко”.
На думку відомого російського дослідника професора Мапихіна В.И. вживання математичних методів в економіці йде по трьох напрямах: математична економіка, математичні моделювання економіки і економіко-математичні методи. При цьому математична економіка розуміється як чисто математична теорія економіки - аксіоми від економіки, інше від математики. Дисципліна припускає надзвичайно високий рівень абстракції, докази теорем використовується могутні математичні методи (теорема нерухомої крапки, селекції багатозначних відображень і т.п. Математичне моделювання економіки - цей опис математичних моделей економіки їх створення, аналіз. Такими є, наприклад, моделювання виробничих процесів, моделі співпраці і конкуренція, моделі ринків, глобальні моделі міжгалузевого балансу, моделі Солоу, Неймана і т.п. Нарешті, економіко-математичні методи як сукупність математичних методів, що використовуються для створення математичних моделей економіки. До таких, наприклад, відносяться: лінійне програмування, нелінійне і динамічне програмування, методи дослідження операцій, у тому числі теорія ігор і т.п.
Ці висновки є видимими ще в роботах французького дослідника А. Курний: „дослідження про математичні принципи теорії багатств” від 1838 р., де систематично використовуються математичні методи. В своїй книзі в 1874 р. У. Вальрас писав: „чиста теорія економіки є наука, що нагадує у всьому фізико-математичні науки...ми повинні узяти з практики основні поняття, такі як обмін, попит, пропозицію, ринок, капітал, дохід, послуги, продукти. Від цих реальних понять треба абстрагуватися і визначити відповідні ідеальні поняття. Звернення до дійсності і практичного вживання потім можливо тільки після створення теорії... чиста теорія повинна передувати прикладній економіці”.
Вам будет интересно - Доклад: Задачи, пути и средства преодоления отставания и ускорения эффективного развития персонала в строительстве
На ранньому етапі розвитку математичної економіки в XVIII-XIX столітті основним математичним апаратом було диференціальне і інтегральне числення. Останнім часом різні математичні теорії сталі інструментом рішення економіко-математичних задач - це в першу чергу лінійне програмування, теореми про нерухому крапку і теорія лінійних операторів, а також теорія ігор. Математичний апарат став тією методологічною основою, яка об'єднує клас економічних задач” допускаючих математичну: формалізацію. Як відзначив академік А.Н. Колмогоров: „в нерозривному зв'язку із запитами техніки і природознавства запас кількісних відносин і просторових форм вивчаються математиками, безперервно розширяється так, що визначення математики наповнюється все більш багатим змістом”. Не слід думати, що математизація економічних досліджень сприймається в економічних кругах як абсолют. Так, нобелівський лауреат Р. Лукас в 1993 р. писав: Чи „можна придбати знання про реальність за допомогою пера і паперу? Математичні моделі - це вигадані світи, придумані економістами. Всі розглянуті мною моделі могли б бути, але не були зіставлені з наглядами. Не дивлячись на це, я вважаю, що процес створення моделей, в який ми залучені, абсолютно необхідний, і я не можу уявити собі, як без нього ми могли б організувати і використати масу наявних даних”.
На думку відомого російського економіста Г.Б. Клейнера вірогідність визнання практично будь-якої нової економічної теорії або концепції навряд чи не у вирішальному ступені залежить від того, якою мірою ця концепція допускає математичну формалізацію, наскільки цікавий апарат, що використовується при цьому, і наскільки вражають одержані при дослідженні моделі математичні результати. В західній економічній літературі пригнічуючі більшість теоретичних і прикладної наукової статі в області економіки містять як Центральна частина ту або іншу математичну модель, розроблену для перевірки або ілюстрації гіпотез. У вітчизняній економічній науці пропорції між „математизованими” і „нематематизованими” роботами схиляються швидше на користь других, хоча і спостерігається тенденція до зміни у бік перших. Слід визнати, що вітчизняні моделі з часів Л.В. Канторовича традиційно є більш прикладними, направленими на оптимізацію конкретних рішень, на противагу західним моделям, які носять більш теоретичний характер. Відомо також, що приблизно половина Нобелівських премій по економіці присуджена за роботи на стику економіки і математики.
Не дивлячись на великий історичний період розвитку математичного моделювання економіки проблема побудови економіко-математичних моделей далека від остаточного рішення: існують різні моделі одного і того ж об'єму, відсутня єдина методологічна база, не завжди надійна перевірка на адекватність. Все більше дослідників замислюються про необхідність інвентаризації накопичених економіко-математичних моделей, створенню; належним чином систематизованого довідника по моделях реальної економіки. До витрат економіко-математичного моделювання слід віднести і можливість під будь-який економічний план формально створити макроекономічну модель. Математичною мовою можуть бути записані як наукові теорії, так і помилкові концепції, що також треба мати у вигляді.
Тому у взаємовідношенні економічного початку і математичного в реальній економічній ситуації треба завжди пам'ятати, що математика лише інструментарій в руках економіста-дослідника, і аналіз подібних явищ повинен носити змістовний, а не формальний характер.
1.1.2. Економіко-математичні методи і моделі в працях зарубіжних дослідників
Економіко-математичні методи, математична економіка і економетрія, що розуміється як набір статистичних методів для нагляду за ходом розвитку економіки, її аналізу і прогнозів, пройшли тривалий шлях свого розвитку.
Похожий материал - Контрольная работа: Изменение средней рентабельности
Економетрія (разом з мікроекономікою і макроекономікою) входить в основу сучасного утворення дослідника-економіста. Економісти часто по різному визначають поняття економетрії. Так, академік В.Л. Макаров, директор Центрального економ і ко-математичного інституту РАН вважає, що в протилежність до економічної теорії, яка займається причинно-наслідковими зв'язками, економетрія займається зв'язками без виявлення їх причин. „основна задача економетрія - наповнити емпіричним змістом апріорні економічні міркування” (Клейн).
Тим часом, економетрія не могла бути належним чином розвинена, починаючи з роботами її основоположника У. Петі (1623-1627), до тих пір, поки не одержали належного розвитку теорія вірогідності і математична статистика. Перші ідеї, з яких згодом і оформилися ці дисципліни, грунтувалися на міркуваннях теорії азартних ігор (Кардано, Ферма, Паскаль і ін.). Закон великих чисел, доведений у вигляді теореми Якобом Бернуллі (1654-1705), був першим теоретичним обгрунтовуванням накопичених раніше фактів. Теорія вірогідності стає стрункою математичною наукою лише в XIX-XX століттях з появою основоположних праць П. Л. Чебишева, а також. А. Маркова, A.M. Ляпунова і потім С.Н. Бернштейна, А.Н. Колмогорова. По суті лише в роботах А. Н. Колмогорова, якими був закладений аксіоматичний фундамент в підставу дисципліни, теорія вірогідності придбаває таку ж Евклідову строгість, як і диференціальне і інтегральне числення.
Тим самим, економетрія в її нинішньому розумінні є в деякому розумінні вершиною тривалого розвитку економіко-математичної ідеї, що використовує новітні досягнення математичної науки.
Тим часом, математична сторона економіко-математичної ідеї має власні корені.