Дипломная работа: Имитационная модель автоматизированного участка обработки деталей

Оглавление

1. Имитационное моделирование

1.1 Понятие сложной системы

1.2 Понятие математической модели сложной системы

1.3 Классификация математических моделей сложной системы

Возможно вы искали - Реферат: Имитационная модель интеллектуального агента в условиях конкуренции

1.4 Предпосылки для имитационного моделирования сложной системы

1.5 Технологические этапы машинного моделирования сложной системы

1.6 Представление динамики модели при имитационном моделировании

2 СРЕДСТВА РЕАЛИЗАЦИИ ИМИТАЦИОННОЙ МОДЕЛИ

2.1 Табличный процессор Excel

Похожий материал - Курсовая работа: Имитационная модель СТО с использованием программы С++

2.2 Visual Basic for Application

3 РАЗРАБОТКА ИМИТАЦИОННОЙ МОДЕЛИ автоматизированного участка обработки деталей

3.1 Концептуальная модель

3.2 Формальное описание модели

Алгоритм активностей

Очень интересно - Контрольная работа: Имитационное моделирование на основании предварительно установленных зависимостей

4 ВЕРИФИКАЦИЯ ИМИТАЦИОННОЙ МОДЕЛИ

4.1 Контроль за выполнением порядка активностей


1. Имитационное моделирование

1.1 Понятие сложной системы

Решение современных задач управления, проектирования и исследования технических, экономических, организационных и других систем требует привлечения специалистов разных профилей. Их эффективное сотрудничество возможно лишь при условии наличия общей методологии, в рамках которой проводится исследование. Такая методология носит звание «системный анализ». Объектом его изучения является «сложная система», а один из важнейших его инструментов есть моделирование на ЭВМ.

Термин «система» появился в научной литературе давно и является фактически таким же неопределенным, как «множество» или «совокупность». Определим понятие система, как множество компонентов, объединенных в единое целое некоторой формой регулярного взаимодействия или взаимозависимости для выполнения определенной функции. При этом компоненты будем подразделять на подсистемы, также имеющие внутреннюю структуру, как и сама система, и элементы, которые являются неделимыми с точки зрения исследователя сложной системы. Компоненты имеют определенные характеристики (признаки), которые могут принимать дискретные или непрерывные значения в процессе функционирования системы и ее взаимодействия с внешней средой. Воздействие внешней среды выражается через входные (экзогенные) переменные. С другой стороны, результат работы системы фиксируется через выходные (эндогенные) переменные. Если они характеризуют внутреннюю динамику функционирования системы, то это переменные состояния. Выходные воздействия работы системы на внешнюю среду отражаются через переменные, называемые откликами.

Вам будет интересно - Курсовая работа: Имитационное моделирование фирмы по оказанию полиграфических услуг

Системой вследствие присущих ей свойств могут устанавливаться ограничения, представляющие собой пределы изменения значений входных переменных или условия, при которых наблюдаются определенные значения. Ограничения могут также вводиться разработчиком сложной системы. Ни одна задача изучения сложной системы не может быть решена без введения целевой функции (критерия эффективности), которая представляет собой точное отображение целей или задач системы и необходимых правил оценки их выполнения.

Наиболее широко термин «система» первоначально использовался в механике, где обозначал материальную систему, т. е. совокупность материальных точек, подчиненных определенным связям. Подобные системы рассматриваются в основном в задачах динамики. Законы динамики были получены длительным индуктивным путем. Выдвигаемые гипотезы проверялись на многочисленных опытах. Проверялись также и многочисленные следствия выдвигаемых гипотез. Все это было реализовано благодаря возможности ставить «чистые опыты», т.е. устранять многочисленные мешающие факторы – сводить трение к минимуму, ставить опыты в вакууме, проводить достаточно точные измерения и т. п. Кроме того, условия опытов могли быть воспроизведены с весьма большой точностью в другое время и в другом месте.

Новый этап начался с момента, когда ученые приступили к исследованию систем, названных впоследствии «сложными», динамика которых во многом зависит от человека и принимаемых им решений. Перечислим наиболее характерные особенности сложных систем (СС).

1. Уникальность. Аналогичные по назначению системы имеют ярко выраженные специфические свойства, во многом определяющие их поведение.

2. Слабая структурированность теоретических и фактических знаний о системе. Так как изучаемые системы уникальны, то процесс накопления и систематизации знаний о них затруднен. Сюда же следует отнести слабую изученность ряда процессов, связанную с обычными для сложных систем изменениями их технической и технологической баз, значительным влиянием человеческого фактора, невозможностью или ограниченностью «натурного эксперимента».

Похожий материал - Реферат: Имитационное структурное моделирование системы

Следствием этого, в частности, является необходимость использования ансамбля моделей при анализе системы. Различные модели могут отражать как разные стороны функционирования системы, так и разные уровни отображения исследователем одних и тех же процессов.

3. Составной характер системы. Уже на самом первом этапе изучения системы исследователь вынужден использовать понятие подсистемы как некоторой достаточно автономной части всей системы. Разделение СС на подсистемы, т.е. ее декомпозиция, как правило, зависит от принятых технических решений, целей создания системы и взглядов исследователя на нее. При декомпозиции существенны следующие факторы:

- рассматриваемая система может быть разделена (не обязательно единственным образом) на конечное число подсистем; каждая подсистема в свою очередь может быть разделена на конечное число более мелких подсистем и т.д. - до получения, в результате конечного числа шагов, таких частей, называемых элементами сложной системы, относительно которых имеется договоренность, что в условиях данной задачи они не подлежат дальнейшему разделению на части;

- элементы СС функционируют не изолированно друг от друга, а во взаимодействии, при котором свойства одного в общем случае зависят от условий, определяемых поведением других элементов, и влияния внешней среды;