В настоящее время визуализация процесса намагничивания является одной из наиболее актуальных проблем, сильно проявляющейся при уменьшении магнитных объектов до микронных и субмикронных размеров. Среди многочисленных методов визуализации особое место занимает магнитосиловая микроскопия ввиду возможности получения как геометрической, так и магнитной топологий. Для проверки адекватности изображения в данном случае используется сравнение с известным изображением, полученным независимым методом (например, оптическим или электронным) от специального образца близкого по свойствам к исследуемому – тест-структуре. Одним из наиболее привлекательных материалов для изготовления тест-структур являются феррит-гранаты, позволяющие получать изображения доменной структуры, а также динамики ее перестройки на основе эффекта Фарадея. Самые высокие значения фарадеевского вращения, а, следовательно, и способность наиболее адекватно визуализировать магнитную доменную структуру образцов, предоставляют матрицы на висмутсодержащих феррит-гранатах, в том числе и на Bi3Fe5O12 со значениями фарадеевского вращения до 7,8 º/мкм при наложении магнитного поля [1, 2]. Наиболее распространенными методами получения этих материалов в виде эпитаксиальных пленок или фотонных кристаллов (представляющих интерес из-за возможности получения изображения в узком диапазоне длин волн и варьирования ширины фотонной запрещенной зоны при наложении магнитного поля) являются жидкофазная эпитаксия и лазерная абляция, причем последний метод представляет больший интерес, поскольку в структуре не имеет место образование переходного слоя пленка-подложка.
На рис. 1 приведено схематическое изображение тест-структуры. Материалом для ее изготовления служил висмутсодержащий феррит-гранат (YSmBi)3(FeGa)5O12 в виде пленки исходной толщины 6 мкм, полученный методом жидкофазной эпитаксии. Выбор был сделан в пользу этого состава ввиду того, что использование чистого Bi3Fe5O12 приводит к проблемам, связанным с получением пленок толщиной более 3 мкм, т.к Bi3Fe5O12 является термодинамически неустойчивой фазой и его пленки склонны к образованию трещин.

Рис. 1. Схематическое изображение тест-структуры, размером 2×2 мм и размерностью до 16×16.
Размерность матриц составляла максимально до 16×16 пикселей, а размеры самих пикселей матриц - от 20×20 мкм до 4×4 мкм. Величина магнитного поля для каждого пикселя варьировалась посредством пропускания электрического тока по изолированным шинам. За основу процесса металлизации был взят типовой процесс вакуумного резистивного напыления слоя хрома к пленке золота. Металлизация наносилась на предварительно нагретую до 120 ºС подложку. При этом ширина шин металлизации составляла 10 мкм, толщина Cr/Au 0,1/0,4 мкм, толщина межслойной изоляции Ta2O5 0,4 мкм, утонение пленок до 0,4 – 2,5 мкм и анизотропное травление канавок под металлизацию проводилось методом ионно-лучевого распыления кислородом. Межпиксельное пространство вытравливалось до подложки из галлий-гадолиниевого граната ионами аргона сквозь окна стандартной фоторезистивной маски (Cr/Ti). Для обеспечения адгезии шин металлизации и поверхности граната использовалось ионно-лучевое активирование поверхности низкоэнергетическим (≈ 50 эВ) потоком ионов кислорода на начальной стадии осаждения. Измерение адгезии методом отрыва разваренной УЗ золотой проволоки диаметром 25 мкм выявило хорошую адгезию для такого типа металлизации.
Возможно вы искали - Реферат: Доработка источника напряжения ВС 4-12

Рис. 2. а) Изображение АСМ фрагмента тест-структуры и б) изображение того же фрагмента тест-структуры, полученного методом МСМ.
На рис. 2а и 2б приведены изображения участка тест-структуры, полученные при помощи атомносиловой микроскопии и магнитосиловой микроскопии соответственно. Измерения были выполнены на установке АСМ Integra с магнитосиловой приставкой Е. Кузнецовым. Известно, что одной из основных проблем магнитосиловой микроскопии является разделение магнитного изображения от топологии. Для решения этой проблемы магнитные измерения были выполнены посредством снятия изображения в два этапа прохождения зонда по поверхности исследуемого образца. На первом этапе снималось изображение топологии поверхности в полуконтактном режиме. На втором – при прохождении зонд поднимался на установленную высоту для каждой линии сканирования, используя сохраненные данные по топологии, полученные на первом этапе. Однако, в этом случае имеет место еще одна проблема, а именно Ван-дер-Ваальсовы силы.
Чтобы принебречь их вкладом, взаимодействие между зондом и поверхностью образца должно быть намного больше их. Поэтому при втором прохождении зонда, силы Ван-дер-Ваальса, действующие на коротких расстояниях, исчезали за счет поднятия зонда над поверхностью и при таком его расположении на него действовали только силы магнитного характера. В результате получалась магнитная доменная структура уже с учетом топологии поверхности и изображения, как магнитной доменной структуры, так и АСМ поверхности получались одновременно. Как видно из рисунка 2а, пиксели имели размеры 20×20×2,5 мкм. Сопоставляя изображения магнитосиловой и атомносиловой микроскопий, очевидно, что положения магнитного контраста и пикселей совпадают. На всей плоскости анализируемого участка изображения магнитосиловой микроскопии ориентация доменных стенок перпендикулярна плоскости тест-структуры, как и следовало ожидать исходя из классических представлений о магнетизме.
Однако, структура доменных стенок в областях нахождения пикселей отлична от таковой в межпиксельном пространстве. В межпиксельном пространстве темные и светлые области совпадают по ширине, что свидетельствует об однородности распределения магнитного поля в нем (необходимо еще раз подчеркнуть, что наличие доменной структуры в межпиксельном пространстве обусловлено образованием переходного слоя пленка-подложка при использовании жидкофазной эпитаксии, как метода получения структур). В областях же пикселей светлые области уже темных, что является подтверждением неоднородного распределения магнитного поля.
Похожий материал - Лабораторная работа: Дослідження електричного кола змінного струму з паралельним з’єднанням віток
Из рис. 2б также следует, что домены имеют вид пластинок сложной формы с острыми углами, соответствующими геометрии пикселей. Такой характер неоднородности распределения магнитного поля требует дополнительных исследований, как в теоретическом, так и экспериментальном планах.

Рис. 3. Изображения пикселей исследованной матрицы а) в отсутствии тока и б) при его пропускании. Шины были наложены поверх граната без протрава межпиксельного пространства.
На рис. 3а и 3б представлены изображения пикселей, полученные под действием электрического тока и без него. Особенность данной матрицы заключалась в том, что использовалось наложение шин поверх феррит-граната без протрава межпиксельного пространства. Видно, что в отсутствии тока распределение доменов носит хаотический характер. В то же время при пропускании тока по шинам пикселя, происходит переориентация доменов с обретением ими четкой ориентации в одном направлении, однако, наряду с этим, имеется проблема. При рассмотрении рис. 3б очевидно, что из-за затрудненного теплоотвода происходит разрыв металлизации, что приводит к последующему выходу из строя пикселя.
Перовскитоподобные манганиты A1-xBxMnO3 (где А – редкоземельный, В – щелочноземельный элемент) проявляют многообразие магнитных и электронных свойств в зависимости от номера элемента В и его содержания. Большой интерес к изучению этих соединений был вызван открытием эффекта колоссального магнетосопротивления (КМС – эффекта), обусловленного сильной корреляцией магнитных, электронных и транспортных свойств манганитов [1].
Очень интересно - Лабораторная работа: Дослідження однофазного трансформатора
Интересными объектами для изучения взаимосвязи между изменениями кристаллических и магнитных свойств манганитов под влиянием высокого давления являются соединения Pr1-xSrxMnO3. В данных соединениях наблюдаются множество разнообразных структурных и магнитных фаз в зависимости от уровня легирования щелочноземельным металлом Sr.
При нормальных условиях эти соединения являются парамагнетиками и имеют в зависимости от концентрации атомов Sr различную структуру: орторомбическую при х<0.42 пр. гр. Pnma и пр. гр. Imma при 0.42<х<0.48; тетрагональную при 0.48<х<0.8 пр. гр. I4/mcm; и идеальную кубическую структуру типа перовскита пр. гр. Pm3m при х>0.8 [2]. Различия в кристаллической структуре обуславливает и различия в магнитной структуре этих соединений.
В данной работе изучалось влияние высокого давления на структуру манганита Pr1-xSrxMnO3 с уровнем легирования х=0.9 щелочноземельным металлом Sr. Исследования влияния высокого давления на кристаллическую и магнитную структуру соединения Pr0.1Sr0.9MnO3 методом нейтронной дифракции проводились на дифрактометре ДН-12 импульсного высокопоточного реактора ИБР-2 [3]. Давление устанавливалось с помощью камер на основе сапфировых наковален [4]. Анализ экспериментальных данных осуществлялся с помощью программ MRIA [5] и Fullprof [6], на основе метода Ритвельда.
Установлено, что воздействие высокого давления вплоть до 5 ГПа при фиксированной температуре не приводит ни к структурным, ни к магнитным фазовым переходам. При фиксированном давлении понижение температуры T<180K приводит к структурному фазовому переходу в тетрагональную симметрию, описывающуюся пространственной группой I4/mcm. Этот структурный переход сопровождается магнитным фазовым расслоением на две антиферромагнитные фазы – С и G типа с магнитными моментами μС=3,0(2)μB и μG=1,7(8)μB соответственно. На рисунке 1 представлены дифракционные спектры, полученные при нормальном давлении и различных температурах. На нейтронограммах отчетливо наблюдается уменьшение интенсивности магнитных пиков, свидетельствующее об уменьшении магнитного момента с ростом температуры.

Вам будет интересно - Дипломная работа: Дослідження особливостей залежності заряду перемикання від прямого струму для епітаксіальних
Рис. 4. Экспериментальные нейтронные дифракционные спектры соединения Pr0.1 Sr0.9 MnO3 , измеренные при нормальном давлении и различных температура. Представлены экспериментальные точки, вычисленный профиль и разностная кривая (для Т=10 К) На сноске показаны антиферромагнитные пики при различных температурах

Рис. 5. Показана зависимость параметров элементарной ячейки в зависимости от приложенного давления и линейная интерполяция этой зависимости. Экспериментальная ошибка не превышает размер символа
Рассчитаны зависимости параметров решетки, длин связей Mn-O и углов Mn-O-Mn соединения от давления. На рисунке 2 показано изменение параметров элементарной ячейки в зависимости от давления. Для различных температур рассчитаны изотермические коэффициенты линейного сжатия для параметров элементарной ячейки, модуль всестороннего сжатия B0 для уравнения состояния Берча-Мурнагана [7], а так же магнитный момент для каждой АФМ фазы.
Интерполяция зависимости магнитного момента атома марганца от температуры функцией Бриллюэна [8] позволила определить температуру Нееля для каждой АФМ фазы при различных давлениях (рисунок 3).
Похожий материал - Лабораторная работа: Дослідження трифазної системи при з’єднанні споживачів зіркою

Рис. 6. Зависимость магнитного момента катиона марганца в антиферромагнитной фазе С типа (левый график) и G – типа (правый график) от температуры при нормальном давлении, интерполированная функцией Бриллюэна (сплошная кривая).
Псевдобинарные интерметаллические соединения RT11M (где R – редкоземельные металлы, T – 3d-переходной элемент, M – немагнитный элемент, стабилизирующий структуру, например, Ti, Mo, V, Cr, W или Si) представляют интерес, как материалы для постоянных магнитов. Эти соединения кристаллизуются в тетрагональную структуру типа ThMn12 с пространственной группой I4/mmm [1-2]. Влияние Co на магнитные свойства соединений RFe11-xCoxTi (R = Tb, Er, Y) было изучено ранее [3-5]. Магнитные свойства соединений HoFe11Ti интенсивно изучалось во многих работах, том числе на монокристаллах [6-8].
Целью данной работы явилось получение монокристаллических образцов и изучение влияния замещений атомов Fe атомами Co на спин-переориентационные переходы и магнитные свойства (температуру Кюри, намагниченность, поле анизотропии) соединений HoFe11-xCoxTi (x = 0; 1; 2).