СРОЧНО!! 100 БАЛЛОВ!! Надо дорешать задачу! Вычислите площадь фигуры ограниченной линиями [latex]y= 3^{x} [/latex], [latex]y= 9^{x} [/latex], [latex]x=1[/latex]. Надо ещё начертить график!

Ответы:
Полина Лосева
13-06-2011 04:47

Находим точки пересечения графиков:3ˣ=9ˣ3ˣ=3²ˣх=2хх=0Поулчаем пределы интегрированиях=0, второе значение х=1 - дано[latex]S= intlimits^1_0 {(9^x-3^x)} , dx =(frac{9^x}{ln9}- frac{3^x}{ln3})^1_0= (frac{9^1}{ln9}- frac{3^1}{ln3})-(frac{9^0}{ln9}- frac{3^0}{ln3}) = \ \ =(frac{9}{ln9}- frac{3}{ln3})-(frac{1}{ln9}- frac{1}{ln3}) = \ \=frac{8}{ln3^2}- frac{2}{ln3}=frac{8}{2ln3}- frac{2}{ln3} =frac{4}{ln3}- frac{2}{ln3} = frac{2}{ln3} [/latex]

Глеб Павлюченко
13-06-2011 06:08

Найдем отрезок на котором определенна фигура.Для этого сравним 2 функции.[latex]3^x=9^x[/latex][latex]3^x=3^{2x}[/latex][latex]x=2x[/latex][latex]x=0[/latex]Последняя граница нам уже дана.Поэтому имеем отрезок:[latex][0,1][/latex]Отсюда определенный интеграл:[latex] intlimits^1_0 {9^x-3^x} , dx= frac{9^x}{ln 9}- frac{3^x}{ln 3}Big|_0^1=frac{9}{ln 9}- frac{3}{ln 3}-frac{1}{ln 9}+frac{1}{ln 3}= [/latex][latex]frac{8}{2ln 3}- frac{3}{ln 3}+frac{1}{ln 3}= frac{4-3+1}{ln3}= frac{2}{ln3} [/latex]График во вложении.P.S.Красный график [latex]9^x[/latex]

Также наши пользователи интересуются:

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «СРОЧНО!! 100 БАЛЛОВ!! Надо дорешать задачу! Вычислите площадь фигуры ограниченной линиями [latex]y= 3^{x} [/latex], [latex]y= 9^{x} [/latex], [latex]x=1[/latex]. Надо ещё начертить график!» от пользователя Anzhela Vishnevskaya в разделе Алгебра. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!