Двое рабочих могут вместе выполнить 2/3 некоторой работы за 4 дня. За сколько дней каждый рабочий может выполнить всю работу, если один из них может сделать это на 5 дней раньше, чем второй.
За 1 день они оба выполнять 2/3:4 = 2/12 = 1/6 всей работы.Пусть первый рабочий выполняет всю работу за x дней. Тогда второй рабочий выполнит всю работу за x+5 дней.За 1 день первый выполняет 1/x часть работы, а второй - 1/(x+5) часть работы.Вместе они выполнят 1/x+1/(x+5) = (2x+5)/x(x+5). И это равно 1/6.[latex]frac{2x+5}{x(x+5)}=frac{1}{6}\ 6(2x+5)=x(x+5)\12x+30=x^2+5x\x^2-7x-30=0\x^2-10x+3x-30=0\x(x-10)+3(x-10) = 0\(x-10)(x+3)=0\x_1=10; x_2=-3[/latex]Решение x=-3 отбрасываем, т.к. число дней не может быть отрицательным.Значит, самостоятельно первый рабочий выполнит всю работу за 10 дней. Второй рабочий - за 10+5=15 дней. Вместе - за 6 дней.
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Двое рабочих могут вместе выполнить 2/3 некоторой работы за 4 дня. За сколько дней каждый рабочий может выполнить всю работу, если один из них может сделать это на 5 дней раньше, чем второй.» от пользователя ВАЛЕРА НИКОЛАЕНКО в разделе Алгебра. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!