Найдите хотя бы одно число, произведение всех натуральных делителей которого равна 10^90
Пусть N - наше число и [latex]d_1,ldots,d_k[/latex] - все его натуральные делители. Тогда [latex]N/d_1,ldots,N/d_k[/latex] - те же делители, только записанные в обратном порядке. Если их все перемножим, то получим [latex](d_1cdotldotscdot d_k)^2=N^k[/latex]. Значит, согласно условию, [latex]N^k=10^{180}[/latex]. Будем искать N в виде [latex]N=10^r[/latex]. Тогда его делители имеют вид [latex]2^l5^m[/latex], где [latex]0le l,mle r[/latex], т.е. количество делителей [latex]k=(r+1)^2[/latex] штук. Таким образом, получается уравнение [latex]10^{r(r+1)^2}=10^{180}[/latex]. Отсюда [latex]r(r+1)^2=180.[/latex] Легко проверить, что r=5, является его корнем. Итак, ответ: [latex]N=10^5.[/latex]
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Найдите хотя бы одно число, произведение всех натуральных делителей которого равна 10^90» от пользователя ден хоботов в разделе Алгебра. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!