Найдите длину стороны правильного шестиугольника вписанного в окружеость x в квадрате + y в квадрате = Rв квадрате если точка A(3;4) является одной из его вершин

Ответы:
Асия Быкова
22-03-2014 03:18

Все вершины многоугольника лежат на окружности, что значит что точка A принадлежит графику окружности. Поддставим ее координаты в уравнение.9+16=R^2=25 => R=5Из геометрии известно что сторона правильного шестиугольника вписанного в окружность радиусом R равна как раз R(доказывается легко, проведите два радиуса к соседним вершинам шестиугольника из центра окружности, получится правильный треугольник). Ответ: 5

Также наши пользователи интересуются:

Картинка с текстом вопроса от пользователя Pavel Rybak

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Найдите длину стороны правильного шестиугольника вписанного в окружеость x в квадрате + y в квадрате = Rв квадрате если точка A(3;4) является одной из его вершин» от пользователя Pavel Rybak в разделе Математика. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!