Вычислить углы равнобедренного треугольника, в котором центр вписанной и описанной окружностей взаимно симметричны относительно оснований треугольника.

Ответы:
ИННА КОЧЕРГИНА
09-05-2014 14:04

Введём обозначения:r - радиус вписанной окружности,R - радиус описанной окружности,а - сторона основания треугольника,в - боковая сторона треугольника,х - угол при основании треугольника.Известно, что центр вписанной окружности лежит на пересечении биссектрис, а описанной - на пересечении срединных перпендикуляров.Имеем [latex]r= frac{a}{2} *tg( frac{x}{2} )= frac{a*tg frac{x}{2} }{2} [/latex].Опустим перпендикуляры из центров окружностей на боковую сторону. Получим прямоугольную трапецию с основаниями r и R, вертикальная сторона равна (а/2) - (в/2), наклонная равна 2r (центры равно удаленны от основания).Острый угол трапеции равен углу х как взаимно перпендикулярный.Выразим сторону в через сторону а: [latex]b= frac{a}{2*cosx} [/latex].Далее имеем [latex]sinx= frac{ frac{a-b}{2} }{2r} = frac{a-b}{4r} [/latex].Подставим в уравнение значения b и r, выраженные через а:[latex]sinx= frac{a- frac{a}{2cosx} }{ frac{4a*tg frac{x}{2} }{2} } = frac{2cosx-1}{4cosx*tg frac{x}{2} } [/latex].Решение этого уравнения даёт один из корней:[latex]x=4( pi n+ frac{ pi }{20} )[/latex].Это соответствует х = 4*(180/20) = 4*9 = 36 градусов.

Также наши пользователи интересуются:

Картинка с текстом вопроса от пользователя КСЕНИЯ КУПРИЯНОВА

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Вычислить углы равнобедренного треугольника, в котором центр вписанной и описанной окружностей взаимно симметричны относительно оснований треугольника.» от пользователя КСЕНИЯ КУПРИЯНОВА в разделе Математика. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!