К плоскости ромба со стороной С и тупым углом В(равным 2a), восстановлен перпендикуляр ВР=р. Найти расстояние от Р до диагонали АС
ABCD_ромб ,AB=BC=CD=DA =c ; ∠ABC =2α >90° ;BP⊥(ABCD) ;PB =p.----------------------------------------d(P,AC) -?Пусть O точка пересечения диагоналей ромба AC и BD (O=[AC] ⋂ [BD] ). Соединяем точка O с точкой P. BO проекция наклонной PO на плоскости ромба. По теореме трех перпендикуляров заключаем , что PO ⊥AC (AC⊥ BO⇒AC⊥ BO). Значит PO и есть расстояние от точки P до диагонали AC, т.е. PO =d(P,AC). Из прямоугольного треугольника (диагонали ромба перпендикулярны) AOB:BO =AB*cos(∠ABO) =c*cosα (∠ABO=(∠ABC)/2 =2α/2=α , диагонали ромба являются биссектрисами углов) . Из прямоугольного треугольника PBO (BP⊥(ABCD)⇒BP⊥ BO) по теореме Пифагора:PO =√(PB² +BO²) =√(p² +(c*cosα)²) .ответ: √(p² +(c*cosα)²) .
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «К плоскости ромба со стороной С и тупым углом В(равным 2a), восстановлен перпендикуляр ВР=р. Найти расстояние от Р до диагонали АС» от пользователя Костя Бык в разделе Геометрия. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!