Помогите! СРОЧНО!!! Как найти наименьший положительный период функции: y= sin[latex] frac{3}{2} [/latex]x y= tg [latex] frac{7}{8} [/latex]x Объясните алгоритм действий

Ответы:
Марьяна Гапоненко
08-06-2014 23:34

Надо знать периоды синуса и тангенса. Из них все получается. Алгоритм такой: т.к. период синуса 2Pi, то 3/2x=2Pi, значит x=4Pi/3. Это и есть наименьший положительный период. Аналогично, для тангенса. Его наименьший положительный период равен Pi. Значит 7x/8=Pi, откуда x=8Pi/7. Т.е. ответ 8pi/7. Но вообще, этот метод применим только к функциям, которые имеют вид f(ax+b), где a,b - какие-то числа, и где период f(x) известен и равен T. Тогда приравнивем только ax=T  (b - не трогаем), и отсюда находим x=T/a. Это и есть период функции f(ax+b). Докажем это. Так как период  f(x) равен  T, то f(ax+b)=f(ax+b+T)=f(a*(x+T/a)+b). А это и означает, что период функции f(ax+b) равен T/a.

Также наши пользователи интересуются:

Картинка с текстом вопроса от пользователя Злата Волощук

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Помогите! СРОЧНО!!! Как найти наименьший положительный период функции: y= sin[latex] frac{3}{2} [/latex]x y= tg [latex] frac{7}{8} [/latex]x Объясните алгоритм действий» от пользователя Злата Волощук в разделе Алгебра. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!