Площадь основания правильной треугольной призмы равна sqrt 3 , а длина диагонали боковой грани равна sqrt {13} . Вычислите площадь боковой поверхности призмы.
Ответы:
14-06-2014 04:32
Sбок.пов. =Pосн*НSосн=(а²√3)/4√3=(а²√3)/4, a²=4. a=2прямоугольный треугольник:гипотенуза=√13 - диагональ боковой грани призмыкатет =2 - сторона основания призмыкатет Н -высота призмы. найти.по теореме Пифагора:(√13)²=2²+Н², Н²=13-4, Н=3Sбок. пов.=3*а*НSбок.пов.=3*2*3Sбок.пов=18
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Площадь основания правильной треугольной призмы равна sqrt 3 , а длина диагонали боковой грани равна sqrt {13} . Вычислите площадь боковой поверхности призмы.» от пользователя Ксюха Карпенко в разделе Геометрия. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!