На диагоналях ромба от точки их пересечения отложены четыре равных отрезка. Докажите что концы этих отрезков являются вершинаит квадрата

Ответы:
Марк Глухов
30-06-2015 14:34

Диагонали ромба пересекаются под прямым углом. Если на диагоналях ромба от точки их пересечения отложены четыре равных отрезка, то в полученном четырехугольника получится, что диагонали равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы четырехугольника пополам (то, что делят углы пополам видно из того, что диагоналями четырёхугольник делится на 4 равных равнобедренных прямоугольных треугольника, у которых катеты -это половина диагоналей, а гипотенуза - сторона четырехугольника; следовательно углы при гипотенузе равны по 45 градусов). Углы полученного четырехугольника - прямые. Все это относится к свойствам квадрата, значит четырёхугольник -квадрат, что и требовалось доказать.

Также наши пользователи интересуются:

Картинка с текстом вопроса от пользователя Дарья Быкова

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «На диагоналях ромба от точки их пересечения отложены четыре равных отрезка. Докажите что концы этих отрезков являются вершинаит квадрата» от пользователя Дарья Быкова в разделе Геометрия. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!