Решить задачу: четырехугольник АВСД вписан в окружность. На продолжении диагонали ВД за точку Д выбрана точка Ф такая, что АФ параллельна ВС. Докажите, что окружность, описанная около треугольника АДФ, касается прямой АС.
Угол А+уголД=180-36=144, угол АНВ=180-68=112, он также равен полусумме двух дуг АВ и ДС, то есть (дугаАВ+дуга ДС)/2=112. Сумма углов А и Д равна полусумме дуг на которые они опираются то есть (дуга ВС+дуга ДС)/2+(дуга АВ+ дугаВС)/2=144. Подставляем ранее полученное значение (дуга АВ+дуга ДС)/2=112., получим 112+2ВС/2=144. Отсюда ВС=32, вписанный угол ВАС опирается на эту дугу и равен её половине то есть угол ВАС=32/2=16.
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Решить задачу: четырехугольник АВСД вписан в окружность. На продолжении диагонали ВД за точку Д выбрана точка Ф такая, что АФ параллельна ВС. Докажите, что окружность, описанная около треугольника АДФ, касается прямой АС.» от пользователя Лариса Наумова в разделе Математика. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!