78. Клумба, имеющая форму прямоугольника со сторонами 2м и 4м, окружена дорожкой, имеющей везде одинаковую ширину. Определите ширину этой дорожки, если её площадь в 9 раз больше площади клумбы.
Решаем уравнением: Поскольку клумба окружена дорожкой со всех сторон, то каждая сторона этой дорожки на 2м больше клумбы (+1 слева стороны, +1 справа) . Пусть х - наименьшая сторона клумбы. Тогда другая сторона - х+5. Площадь клумбы - х (х+5). х+2 - одна сторона дорожки (почему +2 я писала в начале) , вторая - х+5+2=х+7. Площадь дорожки - это площадь "дорожки без дырки"((х+7)(х+2)) минус площадь клумбы, т. е. (х+7)(х+2)-х (х+5). Поскольку площать дорожки равна 26, приравниваем эти значения и решаем олученное уравнение: (х+7)(х+2)-х (х+5)=26 х*х (х в квадрате) +2х+7х+14-х*х-5х=26(раскрываем скобки) 4х+14=26(упрощаем) 4х=26-14 4х=12 х=12/4=3(м) -1 сторона клумбы 3+5=8(м) -2 сторона клумбы Ответ: 3м; 8м. Надеюсь, помогла.
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «78. Клумба, имеющая форму прямоугольника со сторонами 2м и 4м, окружена дорожкой, имеющей везде одинаковую ширину. Определите ширину этой дорожки, если её площадь в 9 раз больше площади клумбы.» от пользователя Назар Исаев в разделе Математика. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!