Найти числовое значение выражения:1) log₂₅64+log₅125/82) (2log₅3-log₅36):(log₅4_log₅8)3) 3[latex] 3^{frac{1}{log 11_{3} } } [/latex]
Ответы:
12-11-2015 14:27
[latex]1) log_{5^2}8^2+log_5 frac{5^3}{8}= frac{1}{2}*2*log_58+(log_55^3-log_58)= \ =log_58+3-log_58=3 \ 2)(log_53^2-log_536):(log_54-log_58)=log_5 frac{9}{36}log_5 frac{4}{8}= \ =log_5( frac{1}{2})^2:log_5 frac{1}{2}=2log_5 frac{1}{2}:log_5 frac{1}{2}=2 \ 3)3^{ frac{1}{log_{11}3} }=3^{log_311}=11 [/latex]
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Найти числовое значение выражения:1) log₂₅64+log₅125/82) (2log₅3-log₅36):(log₅4_log₅8)3) 3[latex] 3^{frac{1}{log 11_{3} } } [/latex]» от пользователя Irina Ledkova в разделе Математика. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!