Х1 и x2 корни уравнения 9x^2-5x-1. тогда уравнение, корнями которого являются числа 3x1 и 3x2 имеет вид
9х²-5х-1=0Согласно теореме Виетаx₁+x₂=5/9x₁x₂=-1/9Найдём 3х₁+3х₂ и 3х₁·3х₂ 3х₁+3х₂ =3(х₁+х₂ )=3·(5/9)=5/33х₁·3х₂ =9х₁х₂ =9·(-1/9)=-1Значит уравнение имеет видх²-(5/3)х-1=0 Умножим на 3 , чтобы избавится от дроби 5/33х²-5х-3=0Ответ: 3х²-5х-3=0
согласно теореме Виета ax²+bx+c=0 ⇒ x1+x2=-b/a; x1*x2=c/aв нашем случае 9x²-5x-1=0x1+x2=5/9; x1*x2=-1/9 чтобы привести к 3x1 и 3x2 совершим нижеследующее3(x1+x2)=3*5/9 ⇒ 3x1+3x2=5/33x1*3x2=(-1/9)*3*3 ⇒ 3x1*3x2=-1=-3/3 из этого следует а=3, b=-5, c=-33x²-5x-3=0
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Х1 и x2 корни уравнения 9x^2-5x-1. тогда уравнение, корнями которого являются числа 3x1 и 3x2 имеет вид» от пользователя Милана Поваляева в разделе Математика. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!