Внутри равностороннего треугольника с высотой 6 см взята точка. Найти сумму расстояний от этой точки до сторон треугольника.
Пусть внутри равностороннего треугольника ABC взяли точку O. Площадь треугольника ABC равна сумме площадей треугольников AOB, BOC, AOC. Площадь треугольника AOB можно записать как 1/2*a*h1, где a - сторона AB исходного равностороннего треугольника, h1 - высота треугольника AOB, проведённая из вершины O. Она и будет расстоянием от O до стороны AB. Аналогично, площади треугольников BOC и AOC можно записать соответственно как 1/2*a*h2, 1/2*a*h3, где h2, h3 - расстояния от O до двух других сторон треугольника. Сложив эти три площади, получим, что 1/2*a*(h1+h2+h3)=1/2*a*h, где h - высота исходного равностороннего треугольника. Значит, h1+h2+h3=h, то есть сумма расстояний от любой точки внутри треугольника до его сторон постоянна и равна высоте этого треугольника, в нашем случае 6 см.
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Внутри равностороннего треугольника с высотой 6 см взята точка. Найти сумму расстояний от этой точки до сторон треугольника.» от пользователя Диляра Гокова в разделе Геометрия. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!