Если функция f убывает на отрезке [a ; b] возрастает, а на отрезке [b; c] убывает, то в точке b функция имеет максимум, причем f(b) -наибольшее значение f на отрезке [a; c]. Докажите. Сформулируйте и докажите аналогичное свойство минимума.  

Ответы:
Alsu Naumenko
14-01-2017 01:37

Если f (строго) возрастает на отрезке [a, b], то для любых xy из отрезка [a, b] верно, что f(y)>f(x), в частности для любых x из отрезка [b, c] выполняется f(b)>f(x).f(b) - наибольшее значение на отрезках [a, b] и [b, c], тогда оно наибольшее значение и на объединении отрезков.Для минимума: если функция f убывает на отрезке [b ; c] возрастает, а на отрезке [a; b] убывает, то в точке b функция имеет минимум, причем f(b) -наименьшее значение f на отрезке [a; c].Доказательство: Если f (строго) возрастает на отрезке [b, c], то для любых xy из отрезка [a, b] верно, что f (x)>f(y), в частности для любых x из отрезка [a, b] выполняется f(b)

Также наши пользователи интересуются:

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Если функция f убывает на отрезке [a ; b] возрастает, а на отрезке [b; c] убывает, то в точке b функция имеет максимум, причем f(b) -наибольшее значение f на отрезке [a; c]. Докажите. Сформулируйте и докажите аналогичное свойство минимума.  » от пользователя КСЮХА КОЧКИНА в разделе Алгебра. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!