2cos^2x +(2- √2)sinx+√2-2=0 Отобрать корни принадлежащие отрезку [-3pi;-2pi]

Ответы:
Малик Горожанский
04-04-2017 10:44

2cos^2x +(2- √2)sinx+√2-2=0 2-2sin^2x+(2- √2)sinx+√2-2=0 2sin^2x-(2- √2)sinx-√2=0 sin^2x+(1/√2-1)sinx-1/√2=0 sinx=t t^2+(1/√2-1)t-1/√2=0 t=-1/√2 t=1 sinx=1 sinx=-1/√2   sinx=1: x=pi/2+2pi*n, n є Z при n=-1 x=-3pi/2=-1,5pi не принадлежит [-3pi;-2pi], x>-2pi при n=-2, x=-7pi/2=-3,5pi не принадлежит [-3pi;-2pi], x<3pi   sinx=-1/√2: x=-pi/4+2pi*n, n є Z при n=-1, x=-9pi/4=-1,75pi  xє[-3pi;-2pi], x=5pi/4+2pi*n, n є Z при n=-2, x=-11pi/4=-2,75pi  xє[-3pi;-2pi],   Ответ: x=-9pi/4=-1,75pi x=-11pi/4=-2,75pi

Также наши пользователи интересуются:

Картинка с текстом вопроса от пользователя СОФИЯ МАРЦЫПАН

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «2cos^2x +(2- √2)sinx+√2-2=0 Отобрать корни принадлежащие отрезку [-3pi;-2pi]» от пользователя СОФИЯ МАРЦЫПАН в разделе Алгебра. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!