В прямоугольном треугольнике медиана и высота, проведенные из вершины прямого угла, равны 17см и 15см. Найдите периметр прямоугольного треугольника
Несмотря на то, что прямоугольный треугольник, сторонами которого являются высота, медиана и отрезок гипотенузы между ними, является Пифагоровым (8, 15,17), и высота делит гипотенузу, длина которой равна 17*2 = 34, на отрезки длиной 17 - 8 = 9 и 17 + 8 = 25 (как и положено, 9*25 = 15^2), сам треугольник не является целочисленным, и его катеты надо просто вычислить по теореме Пифагора. Меньший катет равен √(9^2 + 15^2) = 3*√34; Больший катет равен √(25^2 + 15^2) = 5*√34; Ну да, еще периметр 34 + 8*√34 ;
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «В прямоугольном треугольнике медиана и высота, проведенные из вершины прямого угла, равны 17см и 15см. Найдите периметр прямоугольного треугольника » от пользователя Сергей Луганский в разделе Геометрия. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!