Дано четырехугльник АБСД АБ=СД БС=АД угол А = 30градусов точка Е принадлежит БС угол СДЕ = 60 градусов Доказать АБЕД прямоугольная трапеция

Ответы:
Валерия Степаненко
09-07-2017 03:37

Дан четырехугольник ABCD AB=CD BC=AD угол A = 30⁰ E ∋ BC угол CDE = 60⁰   Доказать. ABED - прямоугольная трапеция.   Доказательство.   Рассм. ABCD. угол A = 30⁰ ⇒ угол С = 30⁰ угол В = углу D = (360⁰ - 30⁰ - 30⁰)/2 = 300⁰/2 = 150⁰ угол ADE = угол ADC - угол CDE т.к. угол ADC 150⁰, a по условию угол CDE = 60⁰, то угол AED = 150⁰ - 60⁰ = 90⁰   Опеределения: - трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие не параллельны.  - трапеция, один из углов которой прямой, называется прямоугольной   Рассмотрим ABED - четырехугольник.  BE||AD, AB не параллельно ED (т.к. ED перпендикуляр к AD) угол EDA - 90⁰   След-но ABED - прямоугольная трапеция.  

Также наши пользователи интересуются:

Картинка с текстом вопроса от пользователя Ульнара Матвеенко

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Дано четырехугльник АБСД АБ=СД БС=АД угол А = 30градусов точка Е принадлежит БС угол СДЕ = 60 градусов Доказать АБЕД прямоугольная трапеция» от пользователя Ульнара Матвеенко в разделе Геометрия. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!