Точки M и N — середины сторон AB и AC остроугольного треугольника ABC, отрезки BH и CK — перпендикуляры, проведенные из точек B и C к прямой MN. Докажите, что четырехугольник BCKH и треугольник ABC равносоставлены.
Ответы:
03-11-2010 18:08
Елси из точек М и N опустить перпендикуляры на основание треугольника ВС, получим прямоугольник разделенный на равные треугольники диагональю BM и NC соответственно пополам. По этому прямоугольные треугольники BHM и NKC являются вырезанными из треугольника АВС. поскольку AN=NC и AM=MB площадь АВС=BHKC
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Точки M и N — середины сторон AB и AC остроугольного треугольника ABC, отрезки BH и CK — перпендикуляры, проведенные из точек B и C к прямой MN. Докажите, что четырехугольник BCKH и треугольник ABC равносоставлены.» от пользователя Oksana Paramonova в разделе Геометрия. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!