Точки M и N — середины сторон AB и AC остроугольного треугольника ABC, отрезки BH и CK — перпендикуляры, проведенные из точек B и C к прямой MN. Докажите, что четырехугольник BCKH и треугольник ABC равносоставлены.

Ответы:
Милада Страхова
03-11-2010 18:08

Елси из точек М и N опустить перпендикуляры на основание треугольника ВС, получим прямоугольник разделенный на равные треугольники диагональю BM и NC соответственно пополам. По этому прямоугольные треугольники BHM и NKC являются вырезанными из треугольника АВС. поскольку AN=NC и AM=MB площадь АВС=BHKC

Также наши пользователи интересуются:

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Точки M и N — середины сторон AB и AC остроугольного треугольника ABC, отрезки BH и CK — перпендикуляры, проведенные из точек B и C к прямой MN. Докажите, что четырехугольник BCKH и треугольник ABC равносоставлены.» от пользователя Oksana Paramonova в разделе Геометрия. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!

yii\base\ErrorException
Error

PHP Core Warningyii\base\ErrorException

PHP Startup: Unable to load dynamic library '/usr/lib/php5.6/mysql.so' - /usr/lib/php5.6/mysql.so: cannot open shared object file: No such file or directory

$_GET = [
    'id' => '681077-tochki-m-i-n-serediny-storon-ab-i-ac-ostrougolnogo-treugolnika-abc-otrezki-bh-i-ck',
    'url' => 'perpendikul',
];