Помогите, пожалуйста, с заданием. Случайным образом выбирают одно из решений нерАвенства 1≤|x-3|≤5. Найдите вероятность того, что оно является решением неравенства: а) |x|≤2; б) |x-6|≤2; в) |x|≤1; г) 1≤|x-6|≤2

Авенства 1≤|x-3|≤5. Найдите вероятность того, что оно является решением неравенства: а) |x|≤2; б) |x-6|≤2; в) |x|≤1; г) 1≤|x-6|≤2

Ответы:
Аида Якименко
04-12-2017 21:48

Исходное неравенство распадается на совокупность систем:а) неравенство эквивалентно:Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .о т в е т :    б) неравенство эквивалентно:Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .о т в е т :    в) неравенство эквивалентно:Отрезок данного решения составляет половину от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    о т в е т :    г) неравенство распадается на совокупность систем:Каждый из двух отрезков данного решения составляет четверть от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    о т в е т :   

Картинка с текстом вопроса от пользователя Демид Чумаченко

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Помогите, пожалуйста, с заданием. Случайным образом выбирают одно из решений нер» от пользователя Демид Чумаченко в разделе Алгебра. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!