При делении двузначного числа на сумму его цифр в части получаем 7, а в остатке 3. НаЙдите это число, если известно, что при перестановке его цифр получаем число меньше исходного на 36. Развязать системой! Помогите, пожалуйста!

Йдите это число, если известно, что при перестановке его цифр получаем число меньше исходного на 36. Развязать системой! Помогите, пожалуйста!

Ответы:
ГЕОРГИЙ ТЕРЕШКОВ
23-02-2018 16:15

X-дестки числа y-единицы первое уравнение При делении двузначного числа на сумму его цифр в частном получается 7 , а в остатке 3 (x*10+y)/(x+y)=7+3/(x+y) второе уравнение Найдите это число,если известно,что при перестановке его цифр получается число,меньше искомого на 36. x*10+y=y*10+x+36 решаем первое (x*10+y)/(x+y)=(7x+7y+3)/(x+y) x+y сокращается 3x=6y+3 x=2y+1 решаем второе x=y+4 2y+1=y+4 y=3 x=7 Ответ:число 73

Картинка с текстом вопроса от пользователя Александра Бондаренко

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «При делении двузначного числа на сумму его цифр в части получаем 7, а в остатке 3. На» от пользователя Александра Бондаренко в разделе Алгебра. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!