Сколько четырехугольников можно составить из отрезков длины 1,2,4,8,16,32,64?

Ответы:
Владик Лытвынчук
09-06-2018 08:05

Если в условии имеется в виду, что  отрезок каждой длины можно использовать в четырехугольнике только один раз, то ни одного 4-угольника составить нельзя. Действительно, пусть длины сторон четырехугольника равны 2^k, 2^l, 2^m, 2^n, где 0≤k<l<m<n≤6. Тогда должно выполняться 2^k+2^l+2^m>2^n, т.к. длина ломаной всегда больше расстояния между ее конечными точками. Но 2^k+2^l+2^m≤2^(m-2)+2^(m-1)+2^m==2^(m-2)*(1+2+4)=7*2^(m-2)<2^(m+1)≤2^n. Т.е. получается, что сумма трех меньших сторон четырехугольника меньше большей стороны. Противоречие. Т.е. четырехугольника с  различными сторонами с длинами из этого списка не существует.Если допустить, что некоторые длины сторон могут повторяться, то различных четырехугольников можно составить бесконечно много, т.к. даже со сторонами 1,1,1,1 существует бесконечное число различных ромбов.

Картинка с текстом вопроса от пользователя Konstantin Nahimov

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Сколько четырехугольников можно составить из отрезков длины 1,2,4,8,16,32,64?» от пользователя Konstantin Nahimov в разделе Геометрия. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!