К окружности с центром в точке O проведены из точки B касательные BA и BC (точки А и С - Точки касания). Окружность пересекает отрезок OB в точке Т, угол АТС = 120 градусов. Докажите, что точка Т является точкой пересечения биссектрис треугольника АВС.
Точки касания). Окружность пересекает отрезок OB в точке Т, угол АТС = 120 градусов. Докажите, что точка Т является точкой пересечения биссектрис треугольника АВС.
Отрезки касательных к окружности, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. Значит отрезки ВА = ВС, углы ∠ОВА = ∠ОВС, следовательно треугольник АВС равнобедренный и отрезок ВТ является биссектрисой ∠АВСУгол между двумя касательными, проведёнными из одной точки равен 180° минус величина заключённой внутри него дуги, меньшей полуокружности. Угол АТС вписанный, значит его величина равна половине центрального угла на который он опирается, а опирается он на угол 2*120°=240°, следовательно величина дуги АВ между касательными равна 360°-240°=120°. Отсюда угол между касательными ∠АВС = 180° - 120° = 60°А так как ΔАВС равнобедренный, то ∠ВАС = ∠ВСА = (180°-60°)/2=60°то есть ΔАВС равносторонний, так как у него все углы равны.ΔАТС - равнобедренный, так как находится внутри ΔАВС и вершина Т лежит на отрезке ОВ. Обозначим точку пересечения АС и ОВ как Р, тогда ΔАТР = ΔСТР - прямоугольные и ∠АТР = ∠СТР = 120°:2=60° ⇒ ∠ТАР = ∠ТСА = 30°, то есть половине углов ВАС и ВСА, следовательно АТ и СТ биссектрисы углов ВАС и ВСА.
Также наши пользователи интересуются:
Длина прямоугольника равна 5 см,а ширина-3см.Найди периметр и площадьТоптарга боленiп, томендегi сурактар бойынша оз пikiрлерiндi ортага салындар
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «К окружности с центром в точке O проведены из точки B касательные BA и BC (точки А и С - » от пользователя Машка Минаева в разделе Математика. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!