26 Окружности радиусов 22 и 99 касаются внешним образом. Точки А и В лежат на первой о??ружности, точки С и В — на второй. При этом АС и BD — общие касательные окружностей. Найдите расстояние между прямыми АВ и CD

?ружности, точки С и В — на второй. При этом АС и BD — общие касательные окружностей. Найдите расстояние между прямыми АВ и CD

Ответы:
Марсель Денисенко
18-07-2018 13:21

Касательные АС и ВД образуют угол, биссектриса которого проходит через центры окружностей О1О2. Половина этого угла α равна углу между радиусами R1и R2 , проведенными в точку касания и прямыми АВ и СД.Проведём отрезок из точки касания меньшей окружности параллельно О1О2 до прямой СД.sinα = (R2-R1)/(R2+R1)= (99-22)/(99+22) = 7/11 ≈  0,636364.Расстояние от середины АВ до R1 равно 22*(7/11) = 14. Расстояние от середины СД до R2 равно 99*(7/11) = 63. Ответ: расстояние между прямыми АВ и CD равно (22+99)+14-63 = 72.

Картинка с текстом вопроса от пользователя Кристина Савыцькая

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «26 Окружности радиусов 22 и 99 касаются внешним образом. Точки А и В лежат на первой о?» от пользователя Кристина Савыцькая в разделе Геометрия. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!