Помогите пожалуйста!!! даны координаты точек A,B,C и М найти 1)уравнение плоскости Q проходящей через точки А, В и С 2)каноническое уравнение прямой, проходящей через точку М перпендикулярно плоскости Q 3)точки пересечения полученной прямой с плоскостью Q и координатными плоскостями xOy, xOz, yOz 4)расстояние от точки М до плоскости Q 1,2 решила, а вот 3 и 4 не могу, я в ступоре, может потому что в 1,2ом что то не правильно
Q проходящей через точки А, В и С 2)каноническое уравнение прямой, проходящей через точку М перпендикулярно плоскости Q 3)точки пересечения полученной прямой с плоскостью Q и координатными плоскостями xOy, xOz, yOz 4)расстояние от точки М до плоскости Q 1,2 решила, а вот 3 и 4 не могу, я в ступоре, может потому что в 1,2ом что то не правильно
1)уравнение плоскости Q проходящей через точки А, В и С. Уравнение плоскости:A · x + B · y + C · z + D = 0 . Для нахождения коэффициентов A, B, C и D нужно решить систему:A · x1 + B · y 1 + C · z 1 + D = 0 , A · x2 + B · y 2 + C · z 2 + D = 0 , A · x3 + B · y 3 + C · z 3 + D = 0 . Решим эту систему, которая в нашем случае запишется следующим образом:A · (2) + B · (-2) + C · (1) + D = 0 ,A · (-3) + B · (0) + C · (-5) + D = 0 ,A · (0) + B · (-2) + C · (-1) + D = 0 .Получим уравнение плоскости:- 2x + y + 2z + 4 = 0.Это же решение можно найти как векторное произведение векторов, которое вычисляется по формуле:a→ ×b→ =(ay* bz −by* az ;az* bx −bz* ax ;ax* by −bx* ay ). а→×b→ =(2⋅(−2) +0⋅(−6) ;−6⋅(−2) +2⋅(−5) ;−5⋅0+2⋅2) = =(−4;2;4).Коэффициент D находим так: - D = (2) × (0) × (-1) + (-2) × (-5) × (0) + (1) × (-3) × (-2) - (1) × (0) × (0) - (-2) × (-3) × (-1) - (2) × (-5) × (-2) = -8. Получаем уравнение плоскости Q: -4x + 2y + 4z + 8 = 0 или, сократив на 2, -2x + y + 2z + 4 = 0. 2)каноническое уравнение прямой, проходящей через точку М (-3;4;2) перпендикулярно плоскости Q: -2x + y + 2z + 4 = 0. (x+3)/(-2) = (y-4)/1 = (z-2)/2. 3) точки пересечения полученной прямой с плоскостью Q и координатными плоскостями xOy, xOz, yOz. Найдем точку пересечения прямой и плоскости Q, составим систему уравнений, состоящую из уравнения прямой в параметрическом виде (x+3)/−2 =(y-4)/1 =(z-2)/2 =t и уравнения плоскости −2x+y+2z+4=0 : x = -2t - 3, y = t + 4, z = 2t + 2.Подставим в уравнение плоскости: −2(-2t-3)+(t+4)+2(2t+2)+4=0, 4t+6+t+4+4t+4+4 = 0,9t = -18, t = -18/9 = -2.x = -2*(-2)-3 = 1,y = -2+4 = 2,z = 2*(-2)+4 = 0. Ответ: точка пересечения прямой и плоскости Q: (1;2;0). 4)расстояние от точки М до плоскости Q.Рассмотрим уравнение плоскости Q: −2x+y+2z+4=0 - общее уравнение плоскости.A=−2;B=1;C=2;D=4 Координаты точки M(-3;4;2) Подставляем данные в формулу, получаем d= |−2∗(-3)+1*4+2∗2+4|/√(− 2) ² +1 ²+2 ²) = 18/3 = 6. Ответ: расстояние от точки до плоскости равно d=6
Также наши пользователи интересуются:
Разность частного чисел 177 и 3 и произведение чисел 14 и 4Саставьвыражение найди их значением числа ,3519 и 81 уменьшили р 12 рас
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Помогите пожалуйста!!! даны координаты точек A,B,C и М найти 1)уравнение плоскости » от пользователя Ксюша Кошелева в разделе Математика. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!