Решите пожалуйста, если можете то с объяснением;) Через середину М стороны BC треу??ольника ABC проведена прямая MN, параллельная BA и пересекающая сторону AC в точке N. На ней отложен отрезок NK=MN. Докажите, что ABMK - параллелограмм.

?ольника ABC проведена прямая MN, параллельная BA и пересекающая сторону AC в точке N. На ней отложен отрезок NK=MN. Докажите, что ABMK - параллелограмм.

Ответы:
YULYA ROMANENKO
03-08-2018 16:35

Так как отрезок MN параллелен стороне AC и пересекает стороны треугольника AB и BC, то углы, прилежащие к отрезку MN и к стороне треугольника AC равны- это признак подобия двух треугольников: ABC и MBN. AC/MN=51/17=3 Отношение треугольника MBN к ABC= 1/3, так как треугольники подобны, то между их сторонами такое же отношение 1 к 3. Чтобы найти сторону, нужно BC/3 BC-? найдём с помощью уравнения: Пусть "x"= длине BC, тогда BN="x/3", так как остальная часть равна 32, то уравнение будет таким: x/3+32=x; Приведя уравнение к общему знаменателю "3", оно будет таким: (x+32*3)/3=3x/3; От знаменателя можно избавится x+96=3x; 2x=96; x=96/2=48. 48/3=16 длина MN. Ответ: MN=16.

Картинка с текстом вопроса от пользователя ТИМОФЕЙ ИГНАТЕНКО

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Решите пожалуйста, если можете то с объяснением;) Через середину М стороны BC треу?» от пользователя ТИМОФЕЙ ИГНАТЕНКО в разделе Геометрия. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!