В трапеции , описанной около окружности радиуса 4 , разность длин боковых сторон раВна 4 , а длина средней линии равна 12. Найдите длины сторон трапеции.
Вна 4 , а длина средней линии равна 12. Найдите длины сторон трапеции.
Ответы:
27-10-2018 14:50
Четырехугольник можно описать вокруг окружности, если суммы противоположных сторон равны. Зная значение средней линии = 12, можно узнать сумму оснований. Она равна 24. Значит, можем составить уравнение, приняв за х - длина боковой стороны, х+4 - длина другой боковой стороны - х+(х+4)=24 2х=20 х=10. Узнали боковые стороны - 10 и 14.
Также наши пользователи интересуются:
Придумать загадку о весне со словами-тепло и немножко холодно,питает корни растенКак через дискриминант решить квадратное уравнение
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «В трапеции , описанной около окружности радиуса 4 , разность длин боковых сторон ра» от пользователя Вероника Макогон в разделе Математика. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!