В трапеции FEKL известно, что FL параллельно EK. Точка С - точка пересечения диагоналей, точка А - точка пересечения прямых FE и KL. АС пересекает ЕК в точке В, а FL - в точке D. Докажите, что FD = DL, EB = BK.
, точка А - точка пересечения прямых FE и KL. АС пересекает ЕК в точке В, а FL - в точке D. Докажите, что FD = DL, EB = BK.
Треугольники EAB и FAD подобны, поэтому EB/FD=AB/AD. Аналогично, треугольники BAK и DAL подобны, поэтому BK/DL=AB/AD. Значит EB/FD=BK/DLС другой стороны треугольники EBC и LDC подобны, поэтому EB/DL=BC/CD. Аналогично, треугольники BKC и DFC подобны, поэтому BK/FD=BC/CD. Значит EB/DL=BK/FD.Перемножим полученные равенства EB/FD=BK/DL и EB/DL=BK/FD. Находим, что EB²/(FD·DL)=BK²/(DL·FD). После сокращения, EB²=BK², т.е. EB=BK. Отсюда и из равенства EB/FD=BK/DL следует, что и FD=DL. Все подобия здесь по двум углам в силу парллельности прямых EK и FL.
Также наши пользователи интересуются:
Вырожденность генетического кода проявляется в том, что: 1) каждый ?Приведите дроби к общему знаменателю9/32 и 5/24
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «В трапеции FEKL известно, что FL параллельно EK. Точка С - точка пересечения диагоналей» от пользователя Софья Воробей в разделе Геометрия. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!