Основание пирамиды- равнобедренная трапеция, у которой длины параллельных сторон равны 2 и 8 см. Вычислите объем пирамиды, если каждый двугранный угол при ребре основания равен 60 град

равны 2 и 8 см. Вычислите объем пирамиды, если каждый двугранный угол при ребре основания равен 60 град

Ответы:
Куралай Старостенко
05-11-2018 21:45

Если все двугранные углы при ребрах основания равны, то основание высоты пирамиды -- центр окружности, вписанной в трапецию.(8+2)/2=5 боковая сторона трапеции, её высота равна √5²-3²=4. V=1/3SH=1/3*20*2√3=40√3/3 H=2tg60°=2√3S=((2+8)/2)*4=20 

Картинка с текстом вопроса от пользователя Inna Pysarenko

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Основание пирамиды- равнобедренная трапеция, у которой длины параллельных сторон» от пользователя Inna Pysarenko в разделе Геометрия. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!