Сторона основания правильной четырехугольной пирамиды равна 4 корень из 3. Найдите объем пирамиды, если её боковая грань составляет с плоскостью основания угол 60 градусов.
Так как пирамида - правильная, то её основание есть квадрат со стороной a=4*√3 ед. Тогда площадь основания S=a=16*3=48 кв.ед. Опустим из вершины пирамиды перпендикуляр на плоскость её основания. Точка О пересечения перпендикуляра с плоскостью основания находится на расстоянии r=a/2=2*√3 ед. от сторон основания. Высота пирамиды H, отрезок r и ребро пирамиды b образуют прямоугольный треугольник, в котором прилежащим катетом является r, а противолежащим катетом - H. Так как по условию угол между r и b равен 60°, то H/r=H/(2*√3)=tg 60°=√3. Отсюда H=2*√3*√3=6 ед. и объём пирамиды V=S*H/3=48*6/3=96 куб. ед. Ответ: 96 куб.ед.
Также наши пользователи интересуются:
Решите уравнение 9^2x-1=81 Научные открытия которые способствовали утверждению русского языка мировым
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Сторона основания правильной четырехугольной пирамиды равна 4 корень из 3. Найдите объем пирамиды, если её боковая грань составляет с плоскостью основания угол 60 градусов. » от пользователя Лера Авраменко в разделе Математика. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!