Объем куба равен 72. Най­ди­те объем тре­уголь­ной приз­мы, от­се­ка­е­мой от него плос­ко­стью, про­хо­дя­щей через се­ре­ди­ны двух ребер, вы­хо­дя­щих из одной вер­ши­ны и па­рал­лель­ной тре­тье­му ребру, вы­хо­дя­ще­му из этой же вер­ши­ны.

па­рал­лель­ной тре­тье­му ребру, вы­хо­дя­ще­му из этой же вер­ши­ны.

Ответы:
Владимир Гагарин
22-02-2019 10:26

Находим ребро куба: а(к) = 72 = 29 = 2*9^(1/3). В основании отсекаемой призмы - равнобедренный прямоугольный треугольник с катетами по половине ребра куба: а(п) = (2*9^(1/3))/2 = 9^(1/3). Площадь основания призмы So(п) = (1/2)(а(п)) = (1/2)*(9^(1/3)) = (1/2)* 9^(2/3). Объём призмы V = So(п)*H = So(п)*а(к) = = (1/2)* 9^(2/3)*2*9^(1/3) = 9.

Картинка с текстом вопроса от пользователя Алина Бульба

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Объем куба равен 72. Най­ди­те объем тре­уголь­ной приз­мы, от­се­ка­е­мой от него плос­ко­стью, про­хо­дя­щей через се­ре­ди­ны двух ребер, вы­хо­дя­щих из одной вер­ши­ны и » от пользователя Алина Бульба в разделе Математика. Задавайте вопросы и делитесь своими знаниями.

Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!