Найти уравнение перпендикулярных прямой 2х-у+5=0, проходящий через точки пересечения с данной прямой с осями координат соответственно
2х-у+5=0, приведем к стандартному виду уравнения прямой у=2х+5 - уравнение прямой к=2 - угловой коэффициент при х=0 у= 2*0+5; у=5, значит А(0;5) - точка пересечения с осью У при у=0 0 =2х+5; 2х=-5; х=-2,5 , значит В(-2,5;0) - точка пересечения с осью Х Точек пересечения две, значит и прямых будет две у=кх+b - общее уравнение прямой, условие перпендикулярности прямых: к=-к у=-2х+b - уравнение прямой, перпендикулярной данной прямой подставим А(0;5) 5=0+b; b=5 у=-2х+5 - первое искомое уравнение подставим В(-2,5; 0) 0=-2*(-2,5)+b 0=5+b b=-5 у= -2х-5 - второе искомое уравнение
Также наши пользователи интересуются:
Переведите число 256(10) из десятичной системы в двоичную Что мы называем историей⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Найти уравнение перпендикулярных прямой 2х-у+5=0, проходящий через точки пересечения с данной прямой с осями координат соответственно » от пользователя Диана Мальгина в разделе Математика. Задавайте вопросы и делитесь своими знаниями.
Открой этот вопрос на телефоне - включи камеру и наведи на QR-код!