Введение
В рабочем пространстве промышленных печей осуществляются газодинамические и тепломассообменные процессы горения, турбулентного смешения топлива, воздуха и газообразных продуктов сгорания, тепловыделений и радиационно-конвективного теплообмена между газообразной средой, футеровкой и технологическим материалом. Совокупность таких процессов, рассматриваемых во всей их сложности и взаимодействии, называют тепловой работой печи.
Известно, что интенсивность теплообмена, а, следовательно, и производительность промышленной печи, расход и полнота сгорания топлива и во многих случаях качество продукции зависят от комплекса взаимосвязанных факторов, таких как длина, форма и температура факела, его положение относительно технологического материала, скорость подачи топлива и воздуха, наличие рециркуляционных или застойных зон. В местах повышенного тепловыделения может, вследствие резкого возрастания температуры, снижаться стойкость футеровки или происходить образование экологически вредных компонентов типа оксидов азота. Таким образом, совершенствование тепловой работы промышленных печей является одной из важнейших современных инженерных задач.
Исследование высокотемпературных теплотехнологических процессов возможно методами математического моделирования, предусматривающими численное решение системы дифференциальных уравнений переноса вещества, количества движения и энергии. Математическая модель, как правило, не требует при решении инженерной задачи каких-либо эмпирических зависимостей, кроме уравнений, определяющих физические свойства веществ. Программы, реализующие на ЭВМ математическую модель тепловой работы промышленной печи, дают возможность постановки численного эксперимента, достаточно полно учитывающего реальные условия задачи.
Поставленные задачи ограничиваются в основном расчетным исследованием температурного режима работы футеровки вращающейся печи на участке струйного течения газообразной среды в зоне спекания или декарбонизации технологического материала.
Возможно вы искали - Дипломная работа: Математическое моделирование услуг Интернет
Задание
ИСХОДНЫЕ ДАННЫЕ:
1. Наружный диаметр корпуса печи: DK =6,2 м;
2. Толщина футеровки: dф =265 мм;
3. Толщина гарнисажного слоя: dсл =0,2•dф мм;
Похожий материал - Контрольная работа: Математическое программирование
4. Материал футеровки: хромомагнезит
5. Частота вращения печи: nоб =1,35 об/мин;
6. Температура технологического материала: tм =1465 0 С;
7. Температура горячего воздуха: tв1 =550 0 С;
8. Температура атмосферного воздуха: tв2 =25 0 С;
Очень интересно - Дипломная работа: Математична модель транспортної системи підприємства
9. Топливо – природный газ месторождение: №24
10. Расход топлива: Bт =7000 м3 /ч (н.у);
11. Скорость истечения топлива из горелки: u0 =160 м/с;
12. Коэффициент избытка воздуха: aв =1,12;
Конструктивная схема печи
Вам будет интересно - Реферат: Математичні моделі реклами медичних та освітніх послуг у ринкових умовах
Вращающаяся печь располагается с наклоном 4° к горизонту и вращается со скоростью 1–2 об/мин. Вращающаяся печь состоит из корпуса с футеровкой, опоры с приводом, головки с уплотнительными устройствами, теплообменных устройств и питателей.
Корпус печи состоит из стальных сваренных между собой листов, изнутри футерован огнеупорным кирпичом. Футеровка предназначена для сокращения потерь тепла в окружающую среду и для защиты стального кожуха от воздействия высоких температур. Для лучшей теплоизоляции между кожухом и огнеупорной футеровкой применяют слой теплоизоляционного материала. Корпус печи в нескольких местах охвачен бандажами, которые опираются на опорные ролики.
Вращающаяся печь приспособлена для обжига сухого и влажного материала (шлама), который загружается в торец печи и при ее вращении перемещается вдоль нее к противоположному торцу.
Топливо подается в головку, которая расположена в печи с противоположной загрузке стороны. Топливом может является мазут, горючий газ и угольная пыль. Продукты сгорания перемещаются навстречу материалу, т.е. печь является противоточной.
Похожий материал - Контрольная работа: Матричное балансовое равенство
Печь приводится во вращение при помощи венцовой шестерни, соединенной с редуктором и электромотором.
В зоне подогрева материалов (низкотемпературной части печи) устанавливают теплообменные устройства.
Описание тепловой работы печи
Процесс теплообмена, во вращающейся печи, является довольно сложным. В высокотемпературной части печи преобладает теплообмен излучением, а в низкотемпературной – конвективный теплообмен.