Рег. № _________________
"___"_______________2008г.
МОСКОВСКИЙ НОВЫЙ ЮРИДИЧЕСКИЙ ИНСТИТУТ
Факультет: Финансово-экономический
Реферат
Возможно вы искали - Контрольная работа: Непрямий метод оцінювання параметрів строго ідентифікованої системи рівнянь
По дисциплине: " Эконометрика "
_____________________________________________________________
На тему: _____" Нелинейные регрессии "
Студента
Кулешовой Юлии Вячеславовны
Похожий материал - Реферат: Норберт Винер и кибернетика
Группа_____М07ФЗВС-2/04 сп____
Курc _____второй______
Форма обучения__ _заочная______
Преподаватель_______________
Дата сдачи___________________
Очень интересно - Реферат: НТР на современном етапе розвития
Результат проверки_____________
Работа защищена с оценкой
2008/2009 уч. год
Содержание
Введение. 3
1. Линейная регрессия. 5
Вам будет интересно - Контрольная работа: Область прогноза для однофакторной и двухфакторной модели. Точечный прогноз на основании линейной прогрессии
2. Полиномиальная регрессия. 6
3. Нелинейная регрессия. 8
4. Сглаживание данных. 12
5. Предсказание зависимостей. 14
Литература. 15
Введение
Похожий материал - Курсовая работа: Обоснование производственной программы предприятия
Аппроксимация данных с учетом их статистических параметров относится к задачам регрессии. Они обычно возникают при обработке экспериментальных данных, полученных в результате измерений процессов или физических явлений, статистических по своей природе (как, например, измерения в радиометрии и ядерной геофизике), или на высоком уровне помех (шумов). Задачей регрессионного анализа является подбор математических формул, наилучшим образом описывающих экспериментальные данные.
Математическая постановка задачи регрессии заключается в следующем. Зависимость величины (числового значения) определенного свойства случайного процесса или физического явления Y от другого переменного свойства или параметра Х, которое в общем случае также может относиться к случайной величине, зарегистрирована на множестве точек xk множеством значений yk, при этом в каждой точке зарегистрированные значения yk и xk отображают действительные значения Y(хk) со случайной погрешностью k, распределенной, как правило, по нормальному закону. По совокупности значений yk требуется подобрать такую функцию f(xk, a0, a1, …, an), которой зависимость Y(x) отображалась бы с минимальной погрешностью. Отсюда следует условие приближения:
yk = f(xk, a0, a1, …, an) + k.
Функцию f(xk, a0, a1, …, an) называют регрессией величины y на величину х. Регрессионный анализ предусматривает задание вида функции f(xk, a0, a1, …, an) и определение численных значений ее параметров a0, a1, …, an, обеспечивающих наименьшую погрешность приближения к множеству значений yk. Как правило, при регрессионном анализе погрешность приближения вычисляется методом наименьших квадратов (МНК). Для этого выполняется минимизация функции квадратов остаточных ошибок: