Контрольная работа: Область прогноза для однофакторной и двухфакторной модели. Точечный прогноз на основании линейной прогрессии

Производительность труда, фондоотдача и уровень рентабельности по плодоовощным консервным заводам области за год характеризуются следующими данными:

№ района Фактор Уровень убыточности продукции животноводства %
Удельный вес пашни в сельскохозяйственных угодьях % Удельный вес лугов и пастбищ %
1 80 20 20
2 87,2 12,8 37,5
3 90,8 9,2 43,4
4 94,7 11,3 45,6
5 81,4 18,6 23,4
6 79,2 10,8 25
7 71,3 28,7 17,2
8 86,2 13,8 33,3
9 71,4 28,6 15
10 77,7 22,9 18,7
11 75,4 14 24,8
12 77,9 13 34,5
13 87,2 12,8 33,1
14 68,1 25 19,2
15 86,2 13,8 31,8

Нелинейную зависимость принять

Обозначим вес пашни в с/х % – Х, уровень убыточности (%) – У. Построим линейную зависимость показателя от фактора. Найдем основные числовые характеристики. Объем выборки n=15 – суммарное количество наблюдений. Минимальное значение Х=68,1, максимальное значение Х=94,7, значит, удельный вес пашни меняется от 68,1 до 94,7 %. Минимальное значение У=15, максимальное значение У=46,5, уровень убыточности животноводства от 15 до 46,5%. Среднее значение . Среднее значение пашни составляет 80,1%, среднее значение уровня убыточности составляет 28,2%. Дисперсия = 58,83 , = 92,965. Среднеквадратическое отклонение 7,67, значит среднее отклонение пашни от среднего значения, составляет 7,67%., 9,64, значит среднее отклонение уровня убыточности от среднего значения, составляет 9,64%. Определим, связаны ли Х и У между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания) – нанесем точки на график. Точка с координатами =(80; 27,08) называется центром рассеяния. По виду корреляционного поля можно предположить, что зависимость между y и x линейная. Для определения тесноты линейной связи найдем коэффициент корреляции : =0,88 Так как то линейная связь между Х и У достаточная. Пытаемся описать связь между х и у зависимостью. Параметры b0, b1 находим по МНК. Так как b1 >0, то зависимость между х и y прямая: с ростом пашни уровень убыточности животноводства возрастает. Проверим значимость коэффициентов bi . Значимость коэффициента b может быть проверена с помощью критерия Стьюдента:

-4,608. Значимость равна 0,000490101, т.е практически 0%. Коэффициент b0 статистически не значим.

6,744. Значимость равна 1,375·10-5 , т.е 0%, что меньше, чем 5%. Коэффициент b1 статистически значим. Получили модель зависимости уровня пашни от убыточности животноводства

Возможно вы искали - Курсовая работа: Обоснование производственной программы предприятия

После того, как была построена модель, необходимо проверить ее на адекватность.

Для анализа общего качества оцененной линейной регрессии найдем коэффициент детерминации: =0,777. Разброс данных объясняется линейной моделью на 77,7% и на 22,3% – случайными ошибками. Качество модели плохое.

Проверим с помощью критерия Фишера.

Для проверки найдем величины: 1012,166 и 1012,166. Вычисляем k1 =1, k2 =13. Находим наблюдаемое значение критерия Фишера 45.48. Значимось этого значения a=1,37610-5 , т.е. процент ошибки равен 0%, что меньше, чем 5%. Модель считается адекватной с гарантией более 95%.

Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза , х=80

Похожий материал - Курсовая работа: Обработка статистической информации при определении показателей надежности

Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза:

Найдем полуширину доверительного интервала в каждой точке выборки xпр :

sе – средне квадратичное отклонение выборочных точек от линии регрессии

4,72

ty = критическая точка распределения Стьюдента для надежности g=0,9 и k2 =13.

Очень интересно - Лабораторная работа: Однофакторный регрессионный анализ при помощи системы GRETL

n =15.

или

xпр – точка из области прогнозов.

Прогнозируемый доверительный интервал для любого х такой , где d(х=80)=10,53, т.е. доверительный интервал для хпр =80 составит от 16,55 до 37,61 с гарантией 90%.

Вам будет интересно - Курсовая работа: Определение оптимальных складских запасов

Совокупность доверительных интервалов для всех х из области прогнозов образует доверительную область.

Т.е. при пашни 80 % уровень убытка животноводства составит от 16% до 37,5%.

Найдем эластичность.

Для линейной модели

Похожий материал - Дипломная работа: Оптимальне використання складських приміщень на ТД ДП "Сандора"

Коэффициент эластичности показывает, что при изменении х=80 на 1% показатель y увеличивается на 3,29%.

Обозначим пашни в с/х – Х, уровень убыточности – У. Построим нелинейную зависимость показателя от фактора вида . Найдем основные числовые характеристики. Объем выборки n=15 – суммарное количество наблюдений.

Минимальное значение Х=9.2, максимальное значение Х=28.7, значит, площадь пашен изменяется от 9.2 до 28.7%. Минимальное значение У=15, максимальное значение У=45.6, уровень убыточности животноводства изменяется от 15 до 45.6%. Среднее значение . Среднее значение пашни составляет 17.02%, среднее значение уровня убыточности животноводства составляет 28.17%.

Дисперсия =42.45, =92.965.

Среднеквадратическое отклонение 6.52, значит среднее отклонение объема пашни от среднего значения, составляет 6.52%, 9.64, значит среднее отклонение уровня убыточности животноводства от среднего значения, составляет 9.64%.