Зміст
1. Підходи до моделювання активного ризику
2. Задача 1
3. Задача 2
Список використаної літератури
Возможно вы искали - Контрольная работа: Планирование и прогнозирование в условиях рынка
1. Підходи до моделювання активного ризику
Планування за середніми
Загальна модель оптимального виробничого планування, в якій вимагається здійснити вибір ресурсно припустимих інтенсивностей технологій, спрямований на максимізацію ефекту ( прибутку ):
(c, x) → max (1)
Ах ≤ b (2)
Похожий материал - Учебное пособие: Планирование эксперимента
x ≥ 0 (3)
де
А — матриця питомих витрат-випуску;
b — вектор ресурсів інгредієнтів;
с — вектор питомих ефективностей технологій;
Очень интересно - Контрольная работа: Побудова багатофакторної і однофакторної лінійних моделей нормальної регресії
х — вектор їх інтенсивностей.
Нехай масив (с, А, b) складається з випадкових величин, тобто залежить від ω — випадкової ситуації або елементарної події деякого імовірнісного простору ( Ω A, P), де Ω — множина елементарних подій; А — алгебра подій, визначена на цій множині; Р — імовірнісна міра.
Якщо в (1) — (3) формально підставити замість с, А, b — с (ω), А (ω), b ( ω ) то правильнішого формулювання задачі ми не отримаємо. Іноді компоненти с (ω), А (ω), b ( ω ) замінюють їх середньоочікуваним значенням (математичними сподіваннями) і розглядається задача
(4)
А(о)) (5)
Вам будет интересно - Контрольная работа: Побудова лінійної регресійної моделі
х ≥ 0 (6)
де
ξ — масив, кожна компонента якого являє собою математичне сподівання відповідної компоненти випадкового масиву ξ.
Визначення плану на підставі (4)-(6) еквівалентне припущенню, що при прийнятті рішення використовуються середньоочікувані значення випадкових параметрів. Такий метод має істотні недоліки. Розглядаючи нерівність (5), яка означає, що використання ресурсів у середньому не перевищує їх кількості. Однак наявність балансу в середньому зовсім не означає узгодженості реальних витрат ресурсів з їх реальною наявністю. План, обраний згідно з (5), у більшості випадків може виявитись -нереальним.
У виразах (4)-(6) математичні сподівання можна замінити на моди випадкових величин — їх найбільш імовірними значеннями. Однак і цей метод має такі ж недоліки, оскільки план, найкращий при модальних значеннях, може виявитись нереальним для переважної більшості інших випадків.
Похожий материал - Контрольная работа: Подходы к оценке рисковых инвестиций
Заміна випадкових величин їх очікуваними значеннями припустима при малих відносних розкидками величин. Причому апріорно вказати ступінь мализни досить важко. Характеристиками відносних розкидів випадкового параметра можуть бути відношення М І ξ – Мξ І / Мξ або σ/Мξ, де Мξ — математичне сподівання, σ = √Dξ, Dξ — дисперсія ξ.
Якщо розкидками випадкових величин знехтувати не можна, то загальною причиною непридатності планування за середнім є те, що множина значень випадкових параметрів ототожнюється з одним якимось значенням. Звичайно, що при цьому втрачається більшість інформації про інші можливі значення випадкових параметрів.
З плануванням за середніми спряжений спосіб, який ґрунтується на дослідженні моделі [4]-[6] на стійкість за допомогою теорії двоїстості та маргінальних співвідношень. Особа, яка приймає рішення, обирає план з оптимального плану моделі [4]-[6].
Недоліком цього підходу є те, що стійкий план визначається на підставі однієї числової характеристики випадкових параметрів без врахування їхніх змін, зважених за ймовірностями.