Реферат: Регрессионный анализ. Парная регрессия

РЕФЕРАТ

Регрессионный анализ. Парная регрессия.


I. Построение регрессионных моделей

1. Смысл регрессионного анализа – построение функциональных зависимостей между двумя группами переменных величин Х1 , Х2 , … Хр и Y. При этом речь идет о влиянии переменных Х (это будут аргументы функций) на значения переменной Y (значение функции). Переменные Х мы будем называть факторами, а Y – откликом.

Сегодня мы разберем наиболее простой случай – установление зависимости одного отклика y от одного фактора х. Такой случай называется парной (простой) регрессией.

2. Построение модели

Этап 1. Исходные данные: заранее известные (экспериментальные, наблюденные) значения фактора хi – экзогенная переменная и соответствующие им значения отклика yi , (i = 1,…,n) - эндогенная переменная;

Возможно вы искали - Дипломная работа: Рекурсия

Активный и пассивный эксперимент.

Выборочные характеристики – позволяют кратко охарактеризовать выборку, т. е., получить ее модель, хотя и очень грубую:

а) среднее арифметическое:

Среднее арифметическое – это «центр», вокруг которого колеблются значения случайной величины.

Похожий материал - Реферат: Решение задач на переливание на бильярдном столе

Пример: средняя продолжительность жизни в России и США

б) дисперсия:

Отклонение от среднего: - характеризует лишь «разброс» конкретной, отдельно взятой величины хi . Если мы захотим получить более полную информацию, нам придется выписать такие отклонения для всех х, т. е., получить такой же ряд чисел, как и исходная выборка.

Можно попытаться усреднить все отклонения, но «среднее арифметическое отклонений от среднего арифметического» имеет особенность:

Очень интересно - Контрольная работа: Решение задач симплекс методом

Эта величина обнуляется из-за того, что отрицательные значения отклонений и положительные взаимно погашаются.

Чтобы избежать этого, возведем их в квадрат, получив так называемую выборочную дисперсию:

Выборочная дисперсия характеризует разброс (вариацию) элементов выборки вокруг их среднего арифметического. Важно иметь в виду, что сами элементы выборки и их дисперсия имеют разные порядок: если элементы выборки измеряются в метрах, то дисперсия – в квадратных метрах.

Стандартное отклонение:

Вам будет интересно - Реферат: Решение задачи линейного программирования симплекс-методом

Полезное свойство дисперсии:

Т. о.

Характеристики генеральной совокупности:

Похожий материал - Курсовая работа: Решение задачи о коммивояжере

математическое ожидание М(Х)

дисперсия D(X)

Несмещенная оценка дисперсии: